oayments
strategy

Dec 2017

Collaborative Requirements
and Rules for the End-User
Needs Solutions

Request to Pay Technical Solution Blueprint

Project/Programme Manager: lvan Litovski
Sponsor: Payments Strategy Forum
Date of Final Approval: 30 11 2017

Approved by: Sian Williams

Collaborative Requirements and Rules for the End-User Needs Solutions

Version / Document History

Version No Date

Author

Comments

0.9 24/11/2017

lvan Litovski

Mike Banyard
Simon Brooks
Adrian Burholt

Duncan Ng'enda

Draft solution Blueprint focussing on
Request to Pay APIs

This is not the final version of the API specification for Request to Pay.

The NPSO will carry on into the next year to further refine this in line with the Indicative Request to Pay
plan published in the End-user Needs Requirements and Rules blueprint.

1

Collaborative Requirements and Rules for the End-User Needs Solutions

ahdgolo [¥ et 10T TN T TP PRUUPRUPR 5
1.1 Purpose of this DOCUMENTuiiiiiie e 5
Quick Overview of REQUEST O PAYveee i 7
ATCRITECEUIE PHINCIPIES ..o 8
3.1 OPtIMISATION CIIETIA v ettt ettt ettt ettt et e e e e et e e ne e e e eaeeeeneee e 8
3.2 Decoupled Systems Based on Web Standards ..o 8
3.3 Functionality ENCApSUIBTIONco.iiii et 8
3.4 Traffic Pattern OptimiSation ittt 8
3.5 Automation, Managed TasKS ..o 9
3.6 Service INSTTUMENTATION L. i e 9
3.7 SUPPOrt Cloud POrabilityc.ooiii e 9
3.8 OB FITST, AP FIrST et eeenene 9
Open APl High Level ADPrOach ..ot 10
4.1 WAt @5 APIS? oo et 10
4.2 AP ECOSYSTRIM ettt 10
4.2.1 Validation of participant implementations. ..ot 11
4.3 APEVEISIONING .ttt e 12
4.3.1 Operating multiple APl versions conCUIrentlycc...oooeiiieici e, 12
43.2 Deprecation Of PreviOUS VEISIONSe.eii et 12
4.3.3 Retirement Of PrevioUS VEISIONSc.v.eiei e 12
4.4 FAN Y=Ll U 1 PSR 12
SECUTTY APIOGCN Lot 14
5.1 RO R\ T et o= a g =T o) PP PPPPPTRPRPRPRTRTRPN 14
5.2 SecUNNG Data IN TraNSIt .. oo e 14
5.3 SecUunNg Data @t REST ...eeie e 14
5.4 Message AUTNENTICATION ... e 14
5.5 Common Attack Vectors and Mitigation..........cociuieie oo, 15
5.5.1 Biller IMPEISONATION ...cee it 15
5.5.2 TPP IMPEISONATION ...eee e 15
55.3 Message tampering and MITIM ... 15
FUNCLIONAl DESCHPLION ... e 16
6.1 OVBIVIBW ... 16
6.2 Third-party Provider Identity and Onboardingcccooioiiiiiii e 16
6.3 ENd-USEr IdENTITY. ..o e 17
6.4 End-user Onboarding ... 19
6.4.1 Onboarding based on existing relationshipcccooiii 19
6.4.2 Onboarding to a new relationship ... 19
6.4.3 Onboarding via invitation from Payee ..ot 19

Collaborative Requirements and Rules for the End-User Needs Solutions

6.5 State Management. ..o
6.6 RESIIENCE 10 FAIIUTES ..t ettt
6.6.1 OUL OF SYNC FEPOSITOTIES ... ittt ettt
6.6.2 Repository operator Ceases OPErationcciciii ittt
6.6.3 ADPP 0PErator CASES OPEIATION ...o..ii ittt ettt ettt et bee e
6.6.4 INAEX FAIUIES ..ttt
6.6.5 REJECHION TAIIUMES ..
6.7 EXECUTING @ PAYMENT L. e e e e e
6.7.1 NON-PSD2 EleCtroniCc PayMenTt.......ouviiiiiiieie et
6.7.2 PSD2 leCtroniC PAYMENTiiiiieiii e
6.7.3 CASN PAYMENT .ot
6.8 Request to Pay WalKtNroUGN ...
6.9 FUNCLIONAl FeQUITEMENT SUMMATIY ... uieiei et
A\ Cel a1 v (O L=l (VLT o] o o TR
7.1 OVBIVIBW L.ttt ettt ettt h e m et ekt e sttt e et ekt e et e et e e at e e e nnee e
7.2 Y IS o oI L (U T (U] (TP PPOPPPPPPPPPPPPPR
7.3 Message FIOWS & SeqUENCE DIagrams........cooiuieie i
7.3.1 REGISTEIING @ NEW USET .ottt
7.3.2 MESSAGE BXCNANTES ..o
7.3.3 Delivery failures and state synchronisationcooieie i i
7.4 Qo] aa] ol e 1011015 TSP
7.4.1 INEX e
7.4.2 MESSAGE REPOSITONY ..eieiii ettt
7.4.3 ADPIICETIONS .. e
Request 10 Pay DEMONSTIIATONoei it
APIDESIGN GUIAEIINES ...t
9.1 OVBIVIBW ..ottt
9.2 RESTful API Design GUIdEINES ... oo
9.2.1 APIURL Naming CONVENTIONS ..ot
9.2.2 URIVEISIONING .o
9.2.3 R O AT ettt
9.2.4 Resource Naming ConventioN.........oiiiii i e
9.2.5 Modelling Resources and SUB-ReSOUICES.ccooiiiiiiiii e
9.2.6 I V=1 4 o UR PP
9.2.7 W WYY (oY= To I o Tq aaF | USRS
9.2.8 FA eI o 1o Lo =T TP TR
9.3 EXCEPHION HANAING . ..oo it
9.3.1 Error HANAING wooeeeeeeceeeee e

Collaborative Requirements and Rules for the End-User Needs Solutions

For the majority of people, the technical aspects of payments are invisible. They run in the background
supporting various activities in our lives that require the movement of money. Examples include
receiving an income, paying bills, making a mortgage or rent payment, or buying groceries. The way we
make payments and interact with payment systems has changed dramatically in the last few years. We
identified these changes in the Strategy and acknowledge that a growing number of end-users’ needs
are not completely met by the current payment systems.

A predominant theme was the need for end-users to have:
e More control over their payments.
o More flexibility over how much, when, and how they pay.
e Increased transparency in their interactions with payments.

There is broad consensus that a Request to Pay service will help address the detriments mentioned
above and bridge the growing needs gap. We designed a Request to Pay service that specifically
addresses these detriments.

Request to Pay is a communication mechanism that will allow a payee (government, businesses,
charities and consumers) to send a message to a payer requesting a payment. Through Request to Pay,
a payee will be able to notify a payer of a payment that requires their attention and in return, the payer
will be able to respond to the payee. For example, the payer will be able to accept the request and
make full or partial payments; decline it; request an extension of the time period in which they can
make the payment; or request more information.

When a payer accepts the request, they will be able to pay using a choice of available methods, and the
acceptance will automatically trigger the payment being made. End-users (individuals, SMEs, corporates
and government) could benefit from Request to Pay. Payees will be provided with visibility on what the
payer’s intention is with regards to a bill payment. Currently, once a payee sends out a bill, they have
limited visibility on whether the payer will make a payment or not and when they will pay.

Increased visibility has a positive impact on cash flow management, payment reconciliation, debt
management and overall customer relationship management. Cash flow management is especially
important to SMEs who tend to have limited cash reserves making them vulnerable to cash flow
challenges. This benefit is dependent on the payer choosing to respond to a Request to Pay. Request to
Pay provides visibility to the payer on outgoing payments; it opens a communication channel to the
payee; and it provides a tool through which a payer can flex how they make their payments - when,
how, and how much.

Request to Pay is independent of the payment mechanism used to make a payment. We have taken an
approach to separate the messaging and the payment mechanism in our design. This approach provides
more flexibility to both payers and payees on the payment mechanisms through which they make and
collect payments, as well as fostering competition for both the messaging component and the payment
mechanism of Request to Pay, which could be provided by different service providers.

Three End-User Needs (EUN) solutions were prioritised in the Strategy: ‘Request to Pay’, ‘Assurance
Data’ and ‘Enhanced Data’. The PSF has developed a minimum set of requirements and rules that any
provider of these solutions would have to meet in order to offer them to users.

This document captures:
e High level solution principles
e Functional service description

Collaborative Requirements and Rules for the End-User Needs Solutions

e Solution blueprint

This architecture blueprint document will be used to:
e Describe agreed functional characteristics of the service
e Guide detailed service design and architecture

The specifications detailed in this document will form part of the suite of common standards defined by
the Payments strategy forum. Once finalised, they will be handed over to the NPSO, who will be
responsible for administering them. The requirements will serve as a core standard on which
the competitive market can build rich and compelling propositions for the benefit of end-users.

Collaborative Requirements and Rules for the End-User Needs Solutions

Request to Pay enables businesses and consumers to send and receive requests for payment, providing a
range of options for data provided in the request, and a range of options a payer has at their disposal to
respond to a particular request. The service has been described via separate business use cases and
requirements documents, however a summary of use cases is presented in Figure 1 below.

Payee Payer

Generate / Update Receive

Update Request to Pay oy RtP
Account Check related
-

Provide related Request_to
infom'lation Pay service

information

EPayment
. Sent Gw
Notify

Payee o ! Respond

Paymen | to RtP
Select Payment
Method and set Pay All
amount

Pay Partial
Request Payment
» Extension
Request to
Pay service Contact Payee

A payee generates a new Request to Pay (or updates an existing RtP), which is then sent to the payer.

A payee has the option to provide additional information to the payer, which could take the form of a hyperlink to related information stored elsewhere or an attached document.
The payer receives the RtP.

The payer reviews related information associated to the received request - this could be a hyperlink or an attached file.

The payer responds to the RtP, at which point they have a list of options for payment; pay all, pay partial, request payment extension, decline or contact payee.

The payer selects the payment method they want to respond to the payment request - these will be a list of methods that the Payee accepts. The payer then can sat the amount that
they want to pay for a single instalment.

The payer initiates a payment to respond to payee's request.

A payer can block a payee from sending them requests. The payee will be notified, and any future requests will not be received by the payer (unless they choose to unblock the
payee).

The payee receives a notificaticn with the payer’'s response

The payee updates payer’s billing account based on the informaticn that has been received.

Figure 1 Request to Pay end-to-end journey

Collaborative Requirements and Rules for the End-User Needs Solutions

This section describes key architectural principles for Request to Pay implementation.

Key optimisation criteria for the Request to Pay architecture is service Reliability. Service architecture must
provide assurance that messages are delivered and functional recovery mechanisms in case of service
failure by either central infrastructure or individual participant infrastructure, or data loss within any
participant (Third Party) data store and multiple participant data stores. Such events should be treated as
Business-As-Usual events rather than exception / disaster recovery events. Dealing with these events
should be automated and included in every implementation.

Secondary optimisation criteria are agility and extensibility.

Agility is primarily to ensure the service can evolve gracefully and in a controlled manner — through, for
example, versioning of service specification and implementations, ensuring future versions of the
software can seamlessly communicate with previous versions for interoperability.

Extensibility in the design can ensure modular implementations and add-on services to be developed
without impacting core functionality. For example, a third party may develop server-side message agents
or message processors to support intelligent functions within their systems of engagement (e.g. apps).

Decoupling Systems of Engagement — with the consumers, Third Party Providers (TPPs) and central
infrastructure operators from service systems and systems of record can ensure that a variety of systems
can interact over clearly defined boundaries — APIs. This ensures that various service components can be
independently developed with technologies appropriate to the problem space, while ensuring
interoperability.

For example, a consumer may want to use a native iOS or Android application, while a large corporate
biller may want to use a batch process with a web interface to interact with the service. Similarly,
repository implementers may choose a variety of technologies to implement e.qg. repositories.

Use of web standards for interoperability between participants is essential. Use of modern concepts such
as APl Management, RESTful services, JSON data payloads, standard HTTP based interactions and
delegated authority via 0Auth2 where applicable would ensure ease of integration and broadest possible
adoption.

Each system component will have a clear, definite set of functions required for operating within the
system. For example, repository functions are to be clearly defined and limited to what is required from a
repository. This does not prevent implementers from providing additional functions or producing an
implementation that may perform as both a repository and a system of engagement, if standard
functions of both are independently compliant.

The message flows in the architecture are to be optimised to ensure manageable volumes and
controllable traffic patterns. Primary goal here is to limit the number of API calls per transported message,

Collaborative Requirements and Rules for the End-User Needs Solutions

using technigues such as caching. Where possible, messages may be queued for asynchronous processing
to ensure service availability.

This principle refers to automation of human interactions required to operate the service, including
onboarding third parties, third-party self-service functions and similar business processes. These functions
should be performed through e.g. a web user interface to enforce process requirements, reduce the
amount of effort and manual intervention required to operate the service.

In order to operate, monitor and continuously improve the service, a level of instrumentation is necessary
in both central infrastructure and TPP provided infrastructure. Solution architecture — as well as terms of
service for TPPs — should provide for regulation compliant Quality-of-Service / aggregated data collection.

While there is no expectation of implementing any particular part of the system on the Cloud, using
modern cloud technologies such as containers and container management is clearly desirable, even in
private datacentre or on premise implementations. This can help ensure availability (e.g. multi-data
centre, multi-provider or multi-cloud implementation), and optimise costs by scaling service to demand.

In developing the Request to Pay service, the implementers are required to adopt outside-in, API-First
approach. The basis of the API-First approach is to define interfaces first, then rapidly test and adapt them
based on a variety of client use cases, all before building actual services.

Application and user interface providers should use mobile-first approach, building attractive user
experiences.

Collaborative Requirements and Rules for the End-User Needs Solutions

APIs allow controlled interchange of data between disparate systems based on open standards and
modern web technologies. Seen as an evolution of Service Criented Architecture (SOA), APIs take
concepts of web-services from enterprise to internet-scale.

" PUBLIC API PARTNER API PRIVATE API
PRODUCTS PRODUCTS PRODUCTS

APl GATEWAY DEVELOPER PORTAL MANAGEMENT PORTAL

* Security * QOnboarding * Productisation

+ Traffic mgmt + Key management + Control

+ Mediation + Self-service + Analytics
. Routing + Analytics + Monetisation p
»_+» Caching + Monetisation .

Figure 2 API Platform and key functions

Using APIs, functionality and data from traditional product platforms can be securely exposed to a variety
of consumers in an internet-wide product ecosystem.

API Platform plays a crucial role in exposing APIs. The three key functions of an API Platform being:

o APl Gateway — an "HTTP firewall” controlling access and performing real-time transformations,
traffic management, caching and a variety of other functions.

e Developer Portal — a web based application providing developer experience — from onboarding,
API catalogue, managing subscriptions to “API products” to billing for monetised APIs.

¢ Management Portal — a web based application providing a control interface for the APl gateway.
Allows publishing APIs, creating API products with pricing, analytics etc.

A variety of vendors provide API platforms with varying feature sets and product focus.
For clarity, the terminology adopted in this document is as follows:

e APl Definition — An Open API Specification 2.0 compliant definition [Ref 2]

e APl Operation — a RESTful HTTP service exposed for use over the open internet [Ref 3]

e APl - a set of APl Operations grouped for functional completeness

e APl Management platform — a product providing functionality to create a publish APIs, provide
an APl catalogue, developer onboarding and other services

Request to Pay implementation may include a layered architecture comprising central service, and
different types of Third-Party participants (for example, message repository operator and end-user
application operators).

10

Collaborative Requirements and Rules for the End-User Needs Solutions

Central Infrastructure
Operator

)

N~
20
.%'%

Repository (Cloud) Repository Software Repository Own

Service Vendors Vendors Implementation

Q'A‘\QQ
e

®©
%

Business Application
for RtP Software
Vendors

@

Figure 3 A view of the Request to Pay participant Ecosystem

Mobile and Web App Kiosk or Counter
Developers service operator

Of crucial importance for the development of the ecosystem are Repository operators. While the core
APIs will be standardised, Repository operators will be able to greatly expand on the default APIs and
offer extended API services. Through this, Repository operators would compete for innovators building
consumer applications, as well as a broad range of corporate and business applications that may need
integration.

Participants may produce various implementations of message repositories or end-user applications, and
associated APIs. In order to be accredited for operating Request to Pay services, participant
implementation must pass a Compatibility Test Suite — a set of tests to establish that particular
implementation complies with expected functionality.

API Definition: All APIs in use by Request to Pay system are to be centrally defined by the NPSO. The
specification is to be created in Open API Specification 2.0 (OAS2) compliant format, and in accordance
with guidelines in API Design Guidelines. .

API Definitions shall include:

e Standardised URI path for each APl operation.

e URI Path shall include API version number

e All request parameters

e For GET and DELETE requests, this shall include all parameters in the request URI

e For POST & PUT requests, this shall include definition of submitted content, including any
structured data definitions (JSON schemas).

e All non-standard headers

e Use of standard headers shall be documented only where it may modify behaviour of any part of
the implementation — e.g. caching etc.

e Al HTTP response codes generated by the API

o Where possible, response codes expected to be generated by the execution environment

e Where response carries a usable payload — e.qg. GET request, some POST/PUT requests, the
response content is to be documented, including any data / JSON schemas for composite JSON
objects.

Preferred data format for Request to Pay REST transactions is JSON (ECMA-404), and schemes are to be
provided in JSON-schema (ietf-draft-6).

11

Collaborative Requirements and Rules for the End-User Needs Solutions

New API versions may, from time to time, be defined by the Request to Pay scheme. Version must be
clearly visible in the request path portion of the APl URL.

If multiple versions of an API are defined by the Request to Pay scheme, participants may operate multiple
versions of the APIs.

The caller (participant issuing a HTTP request), must initially request the most recent version of the APl it is
certified for.

If a target participant does not implement the version requested, the caller must fall back to previous
version of the APl with the appropriate version number in the URL, retrying until an endpoint is reached
that the target implements.

Similarly, if a target participant supports newer version than that requested, they must respond in the
format corresponding to the format requested / version specified in the URL path.

Deprecation of an APl means that there is a newer, preferred version of the APl at an appropriately
formed URI path. However, the deprecated version remains a valid APl endpoint for all practical purposes
until retired.

Deprecation can only be initiated centrally, by the NPSO. Deprecated APl version implementation should
operate without change, with addition of deprecation notice in the response meta-data (e.g. HTTP
header). Deprecation notice may include a web link explaining deprecation warning, the URI of the latest
version or, in case deprecated version is due to be retired, the date and time of retirement.

Retirement of an APl version would require changes to the software used by all participants and is
therefore not a desirable outcome. Due to the possible impact on the service, retirement of APIs must be
a carefully defined and managed process.

There are several distinct cases for retiring an API:

1. All reqgistered participants already use and implement newer API version — retirement is
recommended, notification to all service participants is necessary.

2. A newer version of the APl is available and is preferred, but not all participants implement it. —
Retirement is not recommended, see previous section on running multiple API versions
concurrently.

3. Asecurity flaw is discovered in an APl definition, however no newer version is available. This
must be a carefully managed process depending on how critical the APl is for the operation of
the service.

In API security, it may be necessary to establish:

4. Caller identity (e.g. identity of the participant invoking the API)

5. Responder identity (e.g. identity of the participant responding to the API call)
6. Identity of an end user on behalf of whom the call is made.

7. Authorisation of the third party provider to act on behalf of a particular user

The approach for establishing caller and responder identity (cases 1 & 2 above), is described in section
5.2. Simply put, in TLS connection setup, parties must present certificates issued centrally — e.g. by the
Request to Pay scheme, and that can be validated using associated PKl infrastructure (e.g. OCSP / CRL).

12

Collaborative Requirements and Rules for the End-User Needs Solutions

In the case of a participant providing end-user application, and where end-user identity is maintained by
another participant (e.g. a message repository operator), the implementation shall be based on oAuth2, a
web-standard based delegated authority mechanism. Specifically, the "authorisation code” grant type
flow should be used, covering cases 3 & 4 in the list above.

13

Collaborative Requirements and Rules for the End-User Needs Solutions

The basis of trust is an offline accreditation process of Third Party Providers - participants operating
message repositories and applications. Ideally, each TPP should be accredited using UK Open Banking
scheme. On successful OB accreditation, the TPPs can then apply for Request to Pay accreditation. In this
manner, most of the lifecycle events such as suspension or deregistration can be handled using existing
processes in OB.

Trust revocation can be achieved in two ways. Revoking OB registration status is likely to involve revoking
the certificate issued by OB. In addition, Request to Pay status revocation can be achieved by modifying
TPP status in the Index. An APl which allows TPP registration status check is provided for this purpose.

Data-in-transit is to be secured by standard TLS.

All message exchanges between third parties, and between third parties and central infrastructure shall
be encrypted via TLS and authenticated via mutual TLS certificate authentication, relying on supporting
PKl infrastructure as described in section 6.2.

All message exchanges between end-user applications and their supporting infrastructure shall be
encrypted via TLS.

As an additional security measure, each hop in message delivery would embed a metadata entry
containing TPP name and certificate fingerprint presented by the sending side.

The risk profile for Request to Pay data at rest is relatively low compared to traditional payment systems.
However, due to stringent Data Protection regulations within UK and EU, third party providers are advised
to encrypt data at rest.

Data at rest in the central infrastructure must be encrypted.

Message authentication may be used to ensure message integrity between the sender and receiver. While
this function is currently under review, there are several possible ways to implement this:

1. Sender embeds a one-way hash function of the message content which can used by the receiver
to ensure massage has not been tampered with. Example hash functions are SHA-512 from the
SHA2 family

2. A one way hash function (as above) is embedded into the message each time the message is
transported between service endpoints (e.g. App-Repository, Repository-Repository).

3. Using HMAC message authentication algorithms where sender would generate a HMAC based
on a shared key that the receiver can recreate.

While options 1 & 2 are similar and ensure messages were not tampered with in transit. Option 3 is
gualitatively different in that it may also ensure senders identity, however would also require a way to
securely transport keys between the Payee and Payer which may be very difficult for non-connected end
users.

14

Collaborative Requirements and Rules for the End-User Needs Solutions

In this attack scenario, the attacker would attempt to impersonate a valid Biller, known to the Payer.

Biller impersonation is difficult considering the chain of trust in the present Request to Pay design, and
perhaps only possible in the case where a TPP certificate is compromised (e.g. biller app or repository
certificate is stolen).

There are several potential mitigations for this type of attack.

A standard feature of Request to Pay is the use of Confirmation of Payee (CoP) to ensure Payer can verify
the payee’s account. Further, an approach is presented whereby Payers will be able to generate per-biller
aliases. This would help identify a situation where biller doesn’t match the alias and raise warning.

Finally, use of token-based biller authorisation has been suggested. This is still under consideration as it
may impact operation of service for cash payments or non-connected users.

In this scenario, the attacker may attempt to impersonate a valid repository or a valid biller application so
send fraudulent Requests to Pay.

Present solution guards against TPP impersonation by having an offline accreditation system and online,
real-time revocation facility. This approach is consistent with industry standards and PSD2
implementations.

In this scenario, attacker would intercept valid biller messages and modify content of the message to, for
example, change target account.

Industry standard practice is to introduce message authentication codes (MAC) to authenticate messages,
which will be applied in Request to Pay.

15

Collaborative Requirements and Rules for the End-User Needs Solutions

Request to Pay aims to provide UK consumers with a modern, advanced and extensible payments
messaging service, embracing broader market and creating an ecosystem for applications that utilise the
services.

Request to Pay can be can be implemented as a messaging service — akin to email - overlaid over existing
payments infrastructure. As in most messaging services, we envision following core components:

e Asingle central index, enabling registration of various participants and discovery of services they
provide

e A third-party operated message repositories, enabling end-users to store messages, as well as
playing a role in sending and receiving messages.

e Athird-party operated “client” applications, able to communicate with repositories to send and
retrieve messages.

The overall, high-level solution is presented below.

Consumer Business
—-— L _— L}
rd F F F
App operator E]E D= DE { DE I
|
| i
|
=t 080 = = &S
operato —— b | e App Operator
- e == .
RtP Scheme ue S
‘n:”\

Index

Figure 4 High-level solution architecture

It is worth noting that a general purpose, secure messaging service can have multitude of uses beyond
Request to Pay. While every effort has been put into ensuring generality of the solution, further uses are
not enumerated or analysed here.

Third parties can participate in Request-To-Pay service in two capacities:

e Asend-user application providers (systems of engagement)
e As repository service providers

The two types of third parties have a set of common attributes (including criteria for onboarding), and
additionally, a set of attributes that apply to each category separately.

16

Collaborative Requirements and Rules for the End-User Needs Solutions

In the Request to Pay service, both types of third parties are identified using Public Key Certificates
supported by central PKI infrastructure. The certificates are issued as a result of successful third-party
onboarding process, and can be revoked at any time by the issuing authority. Issuing authority must operate
highly available OCSP or CRL service in order to ensure identity validation.

PSD2 and OB

Accreditation Scope PSD2 TPP
Application

PISP
Accreditation
Criteria

PSD2 / OB PISP
Accreditation

RtP Accreditation Scope

TPP RtP implementation

RtP Technical
Standards

Compliance Test
el o

RtP TS Compliance
Accreditation

Figure 5 PSD2 and Technical Standards accreditation scope for Request to Pay providers

Onboarding and managing third parties requires a clear set of rules, as well as a governance process to
ensure smooth operation of the service. These are to be defined as part of terms of service and contracting
with third parties.

An example of the onboarding and governance, including infrastructure to support these processes, is the
implementation of UK Open Banking and PSD2 PISP third-party management. This system can be used as
a basis for Request to Pay third party management.

Mechanisms for establishing third party identity, credibility, regulatory compliance and application of
security standards can be used directly by relying on PSD2/0B registration and underlying PKl infrastructure.
Lifecycle events such as suspension or loss of accreditation, disputes and arbitration etc. would all remain
in the domain of the PSD2/OB regulatory bodies, and outside of the Request to Pay service scope.

Beyond requirements described above, third parties implementing repositories are also required to pass a
suite of technical requirements. This test suite would exercise the technical implementation of the APIs,
security and resilience of their implementation.

Request to Pay as a service depends on ability to uniquely and securely identify end users using the
service. The “Primary Identifier” would ensure messages can be routed to the right end user — be it Payee
or Payer.

In an analysis exercise, a number of Primary Identifiers have been considered, outlined below.
Importantly, the service must cater for a variety of users that may not have internet connectivity, smart
devices or bank accounts.

17

Collaborative Requirements and Rules for the End-User Needs Solutions Dec 20717

Mobile number Email Address w Abstract number Bank account # [SC Proxy ID Name & address

User Experience
Support non-banked end users
Support non-connected end users (no mobile)

Support non-connected end users (no intemet)

Support non-connected end users (neither)

Ease of integration with PayM and other schemes

L NON NON N

“HONON N
SRCHCN N
Ce GO e
0 00 O
OO e
¢e oo e

Table 1 Primary Identifier for various users

It is worth noting the different expectations on the identity of the Payee (e.g. biller) and Payer. While it is
critical that the Payee identity can be validated, Payer identity verification may in some cases be of lesser
concern.

Further, it is worth noting that there is an expectation that consumer may only be able to issue a Request
to Pay if they have a bank account or equivalent way to receive electronic payments. There is no such
expectation in the case when consumer receives and pays a Request to Pay.

From the consumer point of view, it is also very desirable to make it possible to use an existing primary
identifiers consumer are used to — such as mobile number and email.

In order to satisfy a range of requirements while also ensuring broadest applicability to various types of
users with varying access to banking services, internet and smartphones, a scheme based on proxy-ID has
been adopted.

The Primary Identifier (PID) is composed of:

e The user ID (unique within a provider repository)
e The hash character #
e Repository ID

PID

eris [resoid

Mobile number

Figure 6 Primary Identifier

The user may also associate a number of aliases with their primary identifier. A mobile phone number and
email address are two types of aliases that may improve end-user experience and usability. Other alias
types can be defined.

Aliases may also be used by Payer applications to maintain control over who can make Requests to Pay.
For example, by generating an alias for each Payee, the Payer may have more control over who may issue
requests.

[

8

Collaborative Requirements and Rules for the End-User Needs Solutions

We envision three fundamental scenarios for end-user onboarding.

In this scenario, the end user has an existing relationship with a repository operator. For example, a bank,
Personal Finance Management provider, a utility provider (or more generally a business with which the
consumer is registered), may be accredited as a repository operator. In this scenario, the end user may
opt-in to use the Request to Pay service with this provider.

1. Useris logged in using existing credentials

Application 2. . User agrees to add RtP service to their existing
= services.
@ . 3. APID and message-box is created for this user
9 . by the Repository.
u\,« Repository 4. User can choose to associate their mobile
O 4 number or email with this account
g Index 4.1 In this case, a record is stored in the index to
O [— \ map mobile to PID.

Figure 7 Onboarding based on existing relationship

In this scenario, the user learns about Request to Pay and independently obtains a means to access the
service — e.g. downloading an App from an App Store, or creating a new registration with a Request to
Pay provider.

1. User registers with TPP application
2. To receive payments, a bank account is

l// Application

= required. Confirmation of Payee can be used along
O . with Identity documents.
- . 3. A PID and message-box is created for this user
= Repository by the Repository.
O e 1. User can choose to associate their mobile
s Index Number or email with this account
O =/ 4.1 In this case, a record is stored in the index to
S\ map mobile to PID.

Figure 8 Onboarding based on new relationship

In this scenario, an end user receives a bill where a Request to Pay is provided as payment option. Such
bill would contain an embedded invitation link (e.g. QR or BAR code) that can be used to initiate

registration process.

From this point on, this case is equivalent to “Onboarding to a new relationship” as described above.

This may mean that Payee operates the application and repository, it may be a third-party repository that
Payee has selected, or the Payee may, in their registration process, provide a choice of TPP operators to
the consumer.

19

Collaborative Requirements and Rules for the End-User Needs Solutions

A common query regarding Request to Pay is who owns the ultimate state of a request — e.g. current
balance, settlement status etc. One specific question in this area is when would the system consider a
request paid — when the Payer makes the payment, or when the Payee settlement is complete.

Conceptually, Request to Pay is a messaging service, not a payment service. As such, Request to Pay does
not seek to modify the way either Payer or Payee manage their state. Indeed, Payer may consider the bill
paid once the payment is made, while Payee will consider the bill paid once the payment is recognised on
Payer’s account. Request to Pay does not modify this.

The state of relevance for Request to Pay service is to ensure both Payer and Payee see exact same
messages for each Request to Pay. Solution must ensure that each hop in message delivery provides
receipts and clear responses in case of failure to deliver messages. Further, each participant in the
exchange may at any point request any other participant adjacent in the delivery chain to synchronise
messages for a specific Request to Pay.

Further a need was identified to understand when a request is “closed”, under which conditions and
what end states of the request are possible.

End states
General approach is that there are two way to close the request:

e Payment made in full
e Request declined
e Payment period ends

Following end-states are currently under consideration:

o Paid fully
o Description: The request is paid by the Payer
o Typical cases: The full amount is paid before the end of the payment period (either with
a single Pay-all payment or multiple Pay-partial payments)
e Paid partially
o Description: The request is partially paid, but the payment period has expired
o Typical cases: While a partial payment has been made, payment period has ended
without full payment.
¢ Not paid
o Description: The payment period has expired without a payment being made
o Typical cases: Payer ignored the request and has not made a payment.
o Rejected
o Description: The Payer has rejected the request
o Typical cases: Payer did not recognise the charge or has made the payment outside the
RtP system.

It is worth noting that requests will only ever be soft-closed. That is to say, no data is deleted and no
irreversible action is performed on the request; the “message thread” remains, and both biller and payer
are able to post new messages (e.g. contact biller / contact payer would still be possible).

In effect, the biller and payer applications would determine the status of a request by analysing messages
in the thread.

Paver end state (without biller reconciliation)

From the Payer’s perspective, requests are “closed” based on Payer actions (e.g. pay, decline etc.). There
are several good reasons for this.

A. Payer applications would only send a message when a payment (to the account specified by the
Biller) is successful.

20

Collaborative Requirements and Rules for the End-User Needs Solutions

B. Request to Pay ensures that Payee account is part of the request, and is validated using ANVS,
and therefore it is very unlikely that the payment would be made to wrong account.

If a biller determines that the payment has not been made (despite RtP message), biller should have a
facility to reopen the request via additional Request to Pay message. This is preferred to contacting the
payer out-of-band or activating delinquency process.

Biller end state (with biller reconciliation)

As discussed, biller end state is determined by biller’s accounting systems.

If we take the position that biller acknowledgement is required to “close” the Request to Pay for biller —
for example after account reconciliation on biller side - biller application would be required to detect
payment of a particular request and send a message to acknowledge payment.

In this case, a paid request would remain open (or perhaps somewhere between “open” and “closed”)
until acknowledgement is received, even if payment period ends. This also has ramifications on the “Paid
partially” end state — where the request would remain open until biller confirmation of the partial
payment.

Main benefit of this approach is that biller state is accounted for in “closing” the request. However, this
also has some drawbacks.

e Should this interim state be exposed to end users (payer in this case) - this may seem odd to the
end-users who are not used to having visibility of biller settlement. Could be particularly difficult
in case settlement takes days or weeks.

e This may increase complexity of biller applications as they must send messages to acknowledge
payment for each payment on each request.

e This would increase the complexity of entering end-states — as reconciliation may take any
amount of time, closing of requests may need to be delayed beyond end-date (also applies to
partial payments where we may need to wait for multiple settlement messages).

The approach taken is that failures are part of Business as Usual (BAU), rather than extraordinary events.

In a messaging system as the one being described, it is possible to enter a state where sender and
receiver message boxes for a specific Request to Pay do not match.

It is worth noting that this should not be possible during normal operation of the systems. Each party in
the delivery chain receives an immediate APl response code which signifies success or failure of
completing the hop, and in case of failure the delivery failure is propagated back to the sender.

However, the overall service must maintain resilience in case of failure of any component. For example, if
a biller repository suffers data loss after receiving a message, the two repositories may have conflicting
information about the delivery of a said message. And, as discussed above, each participant in the
exchange may at any point request any other participant adjacent in the delivery chain to synchronise
messages for a specific Request to Pay.

Repositories may become temporarily unavailable through either suspension of their accreditation,
technical failure or for other reasons.

A set of rules is necessary to govern behaviours in this case in order to ensure minimal disruption and
recovery mechanisms for end users. As the very high level principles, the following should be considered:

e All message delivery attempts (either from app or other repositories) must return to sender.

21

Collaborative Requirements and Rules for the End-User Needs Solutions

o This ensures the other party can find out when first party is unable to receive messages.
e Applications must display end-user notification that their message box is currently unreachable
by billers
o This ensures the first party is aware they are unable to send or receive messages.

In the event of accreditation suspension or when the repository permanently ceases operation, all alias
values should be purged from the Index, allowing end-users to re-register their mobile numbers and email
addresses to PIDs hosted by another repository.

An app operator may cease operation through either suspension of their accreditation, temporary
technical failures or permanent closure of business. In this case, end-users can easily switch to another
App provider without losing their PID or any messages — as the repository maintains their message box.

Failure of index functions may be critical for the operation of the system. While every effort is required to
ensure high-availability of the index — with multi-cloud, active-active redundancy implementation, a closer
look is required at each service provided by the index, its impact on the overall system operation and
mitigation technigues.

It is worth considering that end-user account lifecycle must include account decommissioning — e.g. when
the user de-registers from a repository. In this case, end-users PID stops being valid on present repository,
however other participants may still attempt to send messages addressed to decommissioned PID.

In this case, the recipient repository would reject message by returning a specific error and the message
must be returned to sender.

Payment execution is within the operational scope of end-user applications. The end user application may
present the user with a range of payment methods, and execute the payment using any electronic
payment system appropriate.

It is worth noting that the method of payment does not have substantial architectural impact on the
operation of Request to Pay service. Execution of payment is decoupled from messaging. However, key
requirement is that messaging formats in Request to Pay facilitate transfer of information necessary to
initiate and execute payments.

Distinct cases to consider are outlined in more detail below.

A typical scenario for non-PSD2 electronic payment is when a bank operates as a Request to Pay provider.
In this case, bank's standard payment user journey and underlying infrastructure (e.g. faster payments)
may be used to execute a payment without re-authenticating the user.

The mock-up of the user journey is presented below.

22

Collaborative Requirements and Rules for the End-User Needs Solutions

GB Gas - £30.15 GB Gas - £30.15

Use which

In this scenario, the Request to Pay Payer application is also a PSD2 PISP.

GB Gas - £30.15

Please confirm that
you would like to
pay:

Figure 9 Request to Pay user journey

GB Gas - £30.15

Requosts

Payment Initiation Service Provider (PISP) is a new category of a service operator created by the EU
Revised Payment Services Directive (PSD2). The regulation allows a PISP to register multiple payment
accounts for an end-user and initiate payments using these accounts, defining rules to govern these
interactions. For each transaction, the PISP is required to redirect user to the bank, and subject user’s
consent given to the bank, the bank would issue a token to the PISP allowing them to initiate the
transaction (so called dynamic linking). In essence, the payment user journey would involve these three
parties at a minimum (end-user, PISP and the bank).

The mock-up of the user journey is presented below. In the mock-up, the “Payment Pal” is the Request
to Pay app operator that is also a PISP, “GB Gas” is a biller, while “UK Bank” is a bank that user selects to

pay from.

GB Gas - £30.15

Use which
Account?

Please confirm that
you would like to
Pay:

Figure 10 Request to Pay PaymentPal user journey

The execution flow for PSD2 payment is presented below. PSD2 roles for swim-lanes are noted in Amber.
For simplicity, multiple bank endpoints {(/authorise, /token, /payment) have been collapsed into a single
swim-lane, without losing generality of the sequence flow.

23

Collaborative Requirements and Rules for the End-User Needs Solutions

Payer ‘ ‘ Payer App ‘ ‘ Payer repository‘ ‘ Bank ‘ ‘ Biller repository ‘ ‘ Biller app ‘ ‘ Biller
T T T T T

I I
| |
Open App | |
|

Retrieve requests

Show requests

2 Select “Pay all”

Redirect to baHk login page,
containing paymeni instruction data

|
Bank authenticates user
|

|
(SCA). ! HTML forms served by the
bank ur‘\der PSD2.

Enter login details

User Authorises Payeﬁ app
to execute transactibn
|

Authorise
transaction

|

|

|

T

L

]

|

T

! |
] |
| | |
} Redirect to Payer App‘ with Auth Code }
} supplied by the bank}(PSDZ dynamic }
| linking) |
|

I

|

|

T

|

;

|

|

|

|

I

| |
Payer app exchanges auth code for a tok‘En. Auth
code and Payer appicertificate checked by the bank
]]

| |
Payer app calls ba‘nks Payment API. Tokén and Payer

App certifi‘pated checked by the lﬁ)ank
| |

Receipt show to
the user

e - ck— ——

|
! “Pay all” message routed
PaY all mgssage sent to | to Biller tepository
iller, with payment | |
réceipt from the bank. }
|
|
I
|
|
I

Biller app retrieves

essage (push or pulg

| Biller sees the
|

|
I
} message.
|

Figure 11 Execution flow for PSD2 payment

Cash payment is a crucial facility required by the service. The approach is to enable end-users to interact
with the Request to Pay service using a counter or self-service kiosk facilities. In either case, the counter

operator or the kiosk machine are taking the role of Payer Application in the Request to Pay system, and
are sending messages / responses as the Payer Application would.

The user journey for self-service kiosk:

GB Gas

GB Gas
£30.15
£30.15
et GasxTEAE
GB G RtP Kiosk o REQUEST PAID
as O @ peciine GB G . . RtP Kiosk
L ® PaySomo @ Gontact 230 1“‘: Print receipt?
sl i o ® No
L 4) Rof: GASXTS48
: fa— Duo: 1812117
(o] Pay Aul__| I — =
[— PLEASE INSERT CASH =

The user journey for counter service:

24

Collaborative Requirements and Rules for the End-User Needs Solutions

RtP
BG Gas Response:
£30.15 Pay All
ruu-n") s -) Pay Partial
==t = 3 pectine
LB - £ comoet
Toae ABAET Uegaa s method:
Amount:
£30.15

In this section, we will walk through processing of a single request to pay. For simplicity, the end-user-
onboarding scenario presented here is simplified. A more complete overview of this topic is discussed in

detail in section 6.4.

Stages in processing are presented in Figure 4.

O

Setup —Payer provides PID to Biller

Payer Application
Payer

'7_|

EEEO

Payer Repository

@

Payer Repository
Message transfer Agent

Biller Repository

o &
O

Biller Repository

((J

=
=

((

A Y A
TPP registry ndex

e

] Message transfer Agent

Biller Application [file

Figure 12 Solution walkthrough

Setup (step 0) - As part of contracting for the service, Payer provides their Primary Identifier (PID) to the

biller.
1.

Biller generates a RtP and submits it using “Biller Application”
1. This may be either bulk submission, individual submission or “file”
“Biller Repository” queues the requests (messages)
For each request in the queue
1. Biller repository looks at Payer PID, extracts Repository RID
2. Messages addressed to local (on-this-repo) users are delivered to local message-boxes
3. Based on Repo_ID, look up APl endpoint (target repository) in the Index
4. Messages addressed to remote (out-of-this-repo) users are sent to target repository
“Payer Repository” verifies sender, repository and stores message in the payer message-box

“Payer Application” retrieves messages from “Payer Repository” — either push or pull

Biller

25

Collaborative Requirements and Rules for the End-User Needs Solutions

In this section, we enumerate functional requirements established to date. This section is work in
progress.

Category Number Functional requirement

General G1 Request to Pay implementations must be invariant to payment methods.

TPP T2 Allow Third-Party operators to operate end-user applications

TPP T3 Allow Third-Party operators to operate message repositories

TPP T4 Provide a central Third-Party registry that provides standard PKI infrastructure, including
issuing certificates and real-time certificate revocation checks.

End-user E1l Allow end-users to register with Third-Party providers

Repository R1 Support transporting messages between Payer and Payee who may have different service
providers (third party operators).

Repository R2 Support any number of messages associated with a specific request to pay, and easy
retrieval of all message associate with a specific Request to Pay.

General G2 Support message attachments so that a bill may be attached to a request, or a receipt
may be attached to responses.

General G3 Support validation of message format and type in the context of original request, to
provide assurance message can be understood by the other party

Index 11 Support validation of Payee details by Payer — e.g. via assurance data

General G4 Support transporting messages between Payer and Payee who may have different service
providers.

Index 12 Support mutual authentication between any two third-party providers for each
transaction between them.

Index 13 Support mutual authentication between central infrastructure and third party providers
for each transaction.

Index 14 Support real-time checks of Third-Party provider identity

General G5 Support message authentication codes that will prevent tampering with a message in the
delivery path.

General G6 Each participant in message delivery (repository, application) must provide confirmation
of message receipt and notification of failure to deliver a message.

General G7 Each participant in message delivery (repository, application) must provide a facility to
retrieve all messages associate with a specific Request to Pay

General G8 Support uniquely identifying end-users based on a PID

General G9 Support email and mobile phone number as PID aliases

General G10 Support end users who do not have a bank account as Payers

Application Al Third-Party Application providers must support at least one electronic payment method

General G11 The service implementation must not exclude cash payments, however Third Party
provider may choose not to provide this facility

General G12 The service implementation must not exclude end-users who do not have smart devices

General G13 The service implementation must not exclude end-users who do not have internet
connectivity

Application A2 Request to Pay may only be generated with a full PID of the Payee

Application A3 Request to Pay may only be generated if a Payee has a bank account on file

General G14 Associating a Payee with a bank account must involve Confirmation of Payee check

Application A4 Payer must clearly see the result of Confirmation of Payee query on the Payer

Index I5 When looking up an alias, Index must not disclose PID but must rather return only the

Repository endpoint for the given alias.
Table 2 Functional requirement summary

26

Collaborative Requirements and Rules for the End-User Needs Solutions

Overall service architecture is presented in the diagram below.

Consumer Business
—-— L _— L}
rd F F F
App operator E]E DE E’]E { E’]E I
|
| i
|
=t 080 S = &S
operato —— b | e App Operator
- am == =
b -
RtP Scheme ue ?\

Index

Figure 13 Service Architecture

The presented solution is a messaging system, overlaying payments, while being agnostic of payment
method. End users use client applications to send and receive messages. Messages are passed to and

stored in Message Repositories, which also take part in transporting messages between repositories that

hold messages for different end users. The Index is used to discover APl endpoints for repositories, and
maintain aliased Primary identifier. In many ways, this system is similar to email delivery system.
Client applications are akin to email readers, and may allow end users to read messages from
multiple message-boxes. End user accounts are held by repositories, in a similar manner to email
where user identity is with the server. Central “Index” performs discovery functions, similar to the
way DNS services are used to query MX records and resolve mail server addresses.

Key differences between this system and email are:

e Security is stepped up across the board and is intrinsic to the service design. Parties
operating applications and repositories are accredited and all communication is
over HTTPS by default. Other features (e.g. message authentication etc.) are also
considered.

e Use of modern protocols (RESTful APIs over HTTP) as opposed to traditional SMTP
and IMAP. This allows implementers to reuse broad range of modern off-the-shelf
solutions, tools, architectural and security patterns for a variety implementation and
deployment scenarios.

e Messages transported by this system are structured — as opposed to freeform
payload of email messages. Messages in this system are machine readable, which
enables automation of message processing (e.g. bot responders).

to

27

Collaborative Requirements and Rules for the End-User Needs Solutions

There are three essential components in the implementation of the system — Index, Message Repositories
and End-user Applications.

Index provides discovery and accreditation functions, holding data about third party accreditation,
internet addresses of repositories and end-user alias data.

Repositories hold end-user message-boxes, end-user Identity data and provide functions for both — inter-
repository message delivery and APIs that support Applications.

Applications present user interface to data held in repository.

Messages are structured JSON objects, allowing machine processing and automation. Each message
consists of several sections encapsulating:

e Message metadata
e Transport metadata
e Thread information
e Message content

Sample message with comments on types, typical values and value options for Request to Pay is
shown below.

{
"threadHeader": { // To be added by the message creator (App) "profile": "RequestToPay",

"threadID": "userl-repol-user2-repo2-timestamp_nano-64_bitsrandom", "requestType" : "new/existing",
"serviceDetails" : "string like Window Cleaning", "created": "<Time in millis>",

"mac": "47863587653C6674A24234A85878FFB727646"

b

"threadMeta" : { //To be added by Repository "senderPID": "dileepO17#Repositoryl", "recipientPID": "seandoh#Repositoryl",
"num-messages": 33

}

"messageHeader": { // To be added by the message creator (App) "messageld": "timestamp_nano-64_bitsrandom", "created":
"<Time in millis>",

"senderPID": "dileep017#Repositoryl", "recipientMobileNumber": "07825853192", "recipientEmail": "string",
"mac": "47863587653C6674A24234A85878FFB727646"

L

"messageMeta" : { //To be added by App or Repository with whom this info is available "senderName": "dileep g",
"recipientPID": "seandoh#Repositoryl",

}

"deliveryMeta": { //To be added by Repository
"deliveryStatus": "<arrived/delivery-succeeded/failed-delivery-(Sfailed-reason)>", "deliveryPath": [{

"from": "192.0.0.1",

"to" : "<RepositorylD>" "repositoryType" : "<Sender/Receiver>" "senderCert": "C6674A24234A85878FFB",

28

Collaborative Requirements and Rules for the End-User Needs Solutions

"timestamp": 1404869611938,

Lo

1

L

"from": "192.0.0.2",

"to" : "<RepositorylD>" "repositoryType" : "<Sender/Receiver>" "senderCert": "C6674A24234A85878FFB",
"timestamp": 1404869611938,

"messageBody": { // Generated by the message creator (App) example below for RequestToPay profile "messageType" :
"PayAll| PayPartial| ReqPayExtension| Decline| DeclineBlock| NoteToBiller|

RequestToPay| ExtensionGranted| ExtensionDeclined| NoteToPayer", "paymentAmoutRequest" : "number",

"currency" : "GBP",

"paymentDueDate" : "Epoch time in millis", "extensionDateRequested" : "Epoch time in millis", "paymentRequestedDate":

"Epoch time in millis", "accountDetails": {

"accountNumber": "Sender’s Account Number", "sortCode": "Sort Code of the Bank"

L

"paymentAmout" : "number", "paymentDate" : "Epoch time in millis", "note" : "Note by Sender", "Attachments": {
[

"file-name": "filel.pdf",

"content": "base64",

"mac": "2837648275878FFB727646"
1

L

"mac": "28376482736C6674A24234A85878FFB727646"

A registration scenario corresponding to Section 6.4.2 (using App store to install RtP app) is presented in

the sequence diagram form below.

29

Collaborative Requirements and Rules for the End-User Needs Solutions

l Payer ‘ l Device ‘ l App Store ‘
T

T T

Payer App H Payer repository ‘ l Index alias lookup
T T T

I
Open App Store }
I
I
I
I

I
|
I
i
} Find a RtP App
|
I
)

Install App 2
I

4 |
5 Open RtP |
pen arp 1 Enter regithration data

} } } Request Account

} } } Creation

| | | Q Perform ANVS

I I I

| | |

} } } If alias is supplied,

| | ! register alias to PID

I I I QCheck alias not taken
I I I)

I I I Return PID Store alias
! I Account created, PID!

L | presented to user |

I I I

I I I

I I I

I I I

| | |

I I I

| | |

Figure 14 Sequence diagram to show Request to Pay installation using App store

Messages sent by the biller, and especially initial request delivery, require a high standard of trust in the
message delivery chain. For this reason we will demonstrate delivering initial Request to Pay below, but
without losing generality as this pattern is reusable for delivering all biller messages.

Delivering a request to pay involves a range of architectural components and interactions between them
as shown in the diagram below.

Biller ‘ ‘Bil\erapplication‘ ‘Bi\lerRepositor\/‘ ‘ 0oCsP ‘ ‘IndexTPPcheCk‘ ‘ Indexaliaslookup‘ ‘ Payer Repository ‘ ‘ Payer Application ‘ ‘ Payer
T T T T T T

T
} I |
1 Optional OCSP |

| |

I

I
Create a RtP !

Optional TPP check of Biller repo
registration status
|

Payer app retrieves

the request (push Payer app notifies

I I I I
I I I I I
I I I I I
I I I I I
I i I I I I I
!] Call API check of biller app ! ! ! ! ! !
i cert \ i i i i i
! Optional TPP check} ! ! ! !
| 1 of Billerapp | | | I I
} } registration status\} } } } }
| T | | | |
I I I I I I
! ' /‘p If RtP does not ! ! ! !
		includeaPlDor			
		Payer, lookup PID			
		K			
		i Submitthe RtPto			
			Payer repository		
; I I I ; ;					
I L L L I I					
I I I I I I					
I I I I I I					
	Optipnal OCSP check of bille}				
. " tepository certificate	1 1				
I	i i				
v					
I I I					
I I I					
I I I					
I I I					
I I I					
I I I					
I I I					
I I I					
I I					
I I					

I
i I

lf

I
i
| or pull) user of a new
} ! request
! Delivery receipt
Delivery receipt ! -

Figure 15 Request to Pay message exchanges

Note that optional OCSP and TPP checks, along with alias lookup are not expected to occur for every
request. Values can be cached to prevent excessive per-request traffic, with short cache TTL ensuring
small window of opportunity for revoked / invalid TPPs to interact with the service.

30

Collaborative Requirements and Rules for the End-User Needs Solutions

Delivery receipts are optional. If a receipt is requested by any sending party (app, repository), all parties
downstream in the delivery chain must send delivery receipts.

The execution flow for Payer messages closely resembles the sequence above.

As discussed in section 6.6, failures of any component in the system is treated as Business as Usual (BAU),
rather than extraordinary events. Following cases are to be explored and documented:

e Validation failure
o TPP registration check offline
o TPP registration check negative response
o Invalid / revoked certificate presented
e Alias resolution failure
o Index alias service offline
o Alias not found
e Sender repository failure
o Sender repository offline
o Sender repository rejects request
o Sender repository presents invalid certificate
e Receiving repository failure
o Receiving repository offline
o Receiving repository rejects request
o Receiving repository presents invalid certificate

General approach is as follows:

Failure type Handling

Registration check Message must be returned to sender. Sender must be presented with a failure report
Certificate failures and remediation instructions depending on the cases as described in section 6.6.
Service-offline failures Sending party agent (app or repository) must retry sending the message. A retry cycle

pattern may be 5min, 15min, 1hour, 6 hours, 24hours, abandon. Sender must be made
aware that message delivery is pending.

Rejection failures Rejected messages should return to sender, as described in section 6.6.5.

Table 3 Failure types and handling

In this section, we will propose implementation scenarios for main components of the Request to Pay
service — Index, Message Repository and Applications.

The high level architectural diagram for the Index component is presented below.

31

Collaborative Requirements and Rules for the End-User Needs Solutions

Control External
interface API
user Callers

oAuth2

API Gateway Developer Portal APl Management Portal

Microservices

Certificate
Revocation Cache TPP Registry Repo locator Usage data
OCSP/CRL

Figure 16 High level architecture for the Index

Index is essentially a data lookup service that enables validation of Third Party Providers registration
status, discovery of TPP APl endpoints and lookup of end-user aliases. As a centrally operated component,
the index may collect Quality of Service (QoS) data, provide system control and analytics functions.

Index is implemented in a layered architecture. Data layer (amber in the diagram) is exposed via
Microservices (blue layer). APl Platform (green components) exposes the services to the scheme
participants, and provides several standard API platform services. The services are consumed by TPP
operators, while the command and control web application (light blue) is available data management,
system control and analytics.

The Index provides following discovery services to Message Repositories:

e TPP Registration check (given a third-party ID and certification fingerprint, respond with
registration status)

e Alias lookup (retrieve PID based on alias such as mobile number)

e APl endpoint lookup given a RID (retrieve APl URL given repository ID)

Further, to ensure operation, following CRUD (Create, Retrieve, Update, Delete) services are required:

e Management (CRUD) of TPP Registration records
e Management (CRUD) of PID aliases

This compenent ensures the APl gateway can quickly check internal revocation cache, rather than
executing a remote check against e.g. central open banking OCSP / CRL.

As part of central infrastructure, the Index must also provide a management interface to control various
aspects of the service. The management interface will require service monitoring and analytics and
therefore, the Index must also provide functionality to capture usage and Quality of Service (QOS) data:

e Usage data APl endpoint
e QoS report APl endpoint

32

Collaborative Requirements and Rules for the End-User Needs Solutions

All API calls are authorised by validating the certificate presented in TLS mutual-authentication.

The basic input and output data for the APIs is defined below.

TPP Registration check

API Endpoint
TPP Registration Check GET /tppregistrationchk/<id>
Inputs Outputs
URI Path: id TPP ID to check 200 OK JSON Data TPP data provided, including
certificate fingerprint, App
oAuth redirect URL etc..
Headers Errors
caller-id The unique ID of the caller 404 Not found No data TPP invalid
Repository of this API 400 Bad request Malformed data supplied
type Type of TPP to be checked 401 Unauthorized Caller Certificate Invalid
(App / Repo) 500 Internal Server Error Server Error
Alias lookup
API Endpoint
Alias Lookup GET /alias/<alias>
Inputs Outputs
URI Path: alias The alias to get the PID for 200 OK JSON Data Alias has been found and the
PID is returned.
Headers Errors
caller-id The unique ID of the caller 404 Not found No data Alias has not been found
(App / Repo) generated at the 400 Bad request Malformed data supplied
time of registering the caller 401 Unauthorized Caller Certificate Invalid

TPP API endpoint lookup

API Endpoint
TPP API endpoint lookup GET /tppappendpoint/<repold>
Inputs Outputs

URI path: repold The unique ID of the repository
whose App end-point is

enquired

200 OK <endpoint uri>

Repo ID has been found and
endpoint URIs is returned.

Headers

Errors

The unique ID of the caller App
of this API

app-id

404 Not found No data
400 Bad request
401 Unauthorized

TPP ID has not been found
Malformed data supplied
Caller Certificate Invalid

TPP Repo endpoint lookup

API Endpoint
TPP Repository endpoint lookup GET /tpprepoendpoint/<repold>
Inputs Outputs

URI path: repold The unique ID of the repository
whose Repo end-point is

enquired

200 OK <endpoint uri>

Repo ID has been found and
endpoint URIs is returned.

Headers

Errors

caller-repo-id The unique ID of the caller

Repository of this API

404 Not found No data
400 Bad request
401 Unauthorized

TPP ID has not been found
Malformed data supplied
Caller Certificate Invalid

TPP Repo Registration Check

API

Endpoint

check the Registration of a Repository

GET /tppreporegistrationchk/<repold>

33

Collaborative Requirements and Rules for the End-User Needs Solutions

Inputs Outputs

URI path: repold The unique ID of the repository | 200 OK Empty Response
whose registration needs to
checked

Headers Errors

caller-repo-id The unique ID of the caller

Repository of this API

404 Not found No data
400 Bad request
401 Unauthorized

TPP ID has not been found
Malformed data supplied
Caller Certificate Invalid

Manage aliases

API Endpoint
Manage aliases POST, PUT, DELETE /alias/<alias>
Inputs Outputs
URI path: alias Mobile number or email 200 OK <PID>, alias Alias has been created,
modified or deleted
PID The PID to associate with alias
Headers Errors
| 500 Server error | Alias modification error

Usage data and Quality of Service

API Endpoint
Consolidated QoS Data GET /qos
Inputs Outputs
200 OK JSON Data Consolidated QoS data
provided, grouped by
Repositories, further sub
grouped by QoS Type — USER,
THREADS, MESSAGES,
TRANSACTIONS
Headers Errors
500 Server error Error in getting data
404 Not Found No data found

The APIs for internal / management console use are presented below. Use of these APIs are only allowed
to clients presenting specific management console certificate.

TPP Registration Records

API

Endpoint

Manage TPP Registration records of a TPP
Get All TPPs, Create a new TPP

GET, PUT, DELETE /tpp/<tpp_id>
GET, POST /tpp

Security:

Requires management console user authentication token

Inputs

Outputs

URI path: tpp_id TPP id to retrieve, update or

200 OK JSON Data

TPP has been retrieved &

delete returned, modified or deleted
JSON data: see TPP data TPP data to Create 200 OK JSON Data TPP Created
schema
200 OK TPP data array All TPPs retrieved and returned
Headers Errors

500 Server error

Internal Server Error

400 Bad request

Malformed data supplied

401 Not Authorised

If the certificate presented
does not entitle the caller to
execute this API

34

Collaborative Requirements and Rules for the End-User Needs Solutions

TPP App Registration Records

API Endpoint
Manage Registration records of a TPP APP PUT, DELETE /app/<appld>
Create a new APP POST /app
Security: | Requires management console user authentication token
Inputs Outputs

URI path: appld App id to update or delete

200 OK JSON Data TPP App has been modified or

deleted

JSON data: see TPP App data
schema

App data to Create

200 OK JSON Data TPP App Created

Headers

Errors

500 Server error Internal Server Error

400 Bad request Malformed data supplied

401 Not Authorised If the certificate presented
does not entitle the caller to

execute this API

TPP Repository Registration Records

API

Endpoint

Manage Registration records of a TPP Repository
Get All Repositories, Create a new APP

PUT, DELETE /repositories/<repold>
GET, POST /repositories

Security:

Requires management console user authentication token

Inputs

Outputs

URI path: repold Repo id to update or delete

200 OK JSON Data TPP Repo has been modified or

deleted

JSON data: see TPP Repo data
schema

Repo data to Create

200 OK JSON Data TPP Repo Created

200 OK TPP Repo data array Repos retrieved and returned

Headers

Errors

500 Server error Internal Server Error

400 Bad request Malformed data supplied

404 Not Found No Data Found

(delete/update)

401 Not Authorised If the certificate presented
does not entitle the caller to

execute this API

This section provides preliminary look at possible data model for the index.

Data required for Third-Party operators should include:

TPP data
Table — TPP data
Name Type Description
TPP_ID 64bit int Unique identifier of a third-party provider
Organisation name String Registered company name
Organisation reg String Registered company number
number
Organisation address Text Address
Organisation telephone | String Telephone number
number
Organisation technical String Email address
contact
Organisation String Email address
administrative contact
Certification date Date Date of certification
Registration status String To be defined — provisionally one of: test, active, suspended, deleted
Repository operator Boolean If true, this TPP is authorised to operate repository

35

Collaborative Requirements and Rules for the End-User Needs Solutions

Application operator Boolean If true, this TPP is authorised to operate applications
Certificate fingerprint Text

Repository data
Table — Repository data
Name Type Description
TPP_ID 64bit int Unique identifier of a third-party provider
Repository ID String Registered repository name

Primary Repo APl endpoint String Root URL for the API exposing repository-to-repository APls
Secondary Repo APl endpoint | String Root URL for the API exposing repository-to-repository APIs
Tertiary Repo APl endpoint String Root URL for the API exposing repository-to-repository APIs
Primary App APl endpoint String Root URL for the API exposing application APIs

Secondary App APl endpoint String

Root URL for the API exposing application APIs

Tertiary App APl endpoint String Root URL for the API exposing application APIs
Application data

Table — App data

Name Type Description

TPP_ID 64bit int | Unique identifier of a third-party provider

App ID String Registered application name

App name String Registered application name

Primary oAuth redirect URL String Registered redirection URL for oAuth. See “End-user Authentication
service” section in chapter 0.

Secondary oAuth redirect URL String Registered redirection URL for oAuth. See “End-user Authentication
service” section in chapter 0.

Tertiary oAuth redirect URL String Registered redirection URL for oAuth. See “End-user Authentication
service” section in chapter 0.

Table — Alias data

Name Type Description

Alias String Alias — e.g. Email or telephone number

PID String End-user’s primary identifier

The Message repository high level architecture diagram is presented below.

36

Collaborative Requirements and Rules for the End-User Needs Solutions

Other
Message
repositories

Request to
Pay
Applications

Developer Portal API Gateway

=

APl Management Portal
f . A 9 user IDV
Message Transfer Microservices App Microservices

Messages for Other
Message Repositories

S S

Message

MesrEReEre Transfer Agent

Message boxes

To Other Message
Repositories

Figure 17 Message repository high level architecture diagram

The above is one possible representation of a repository implementation — there may be various
implementations, so long as the External interface functions are compliant to Request to Pay
specifications (to be defined). In this instance, a layered approach similar to the Index is presented, with
the exception of the Message Transfer Agent component — a queue processing process which operates
between the message queue table and message-box table.

The message repository performs following functions:

e Provides end-user registration and authentication functions

e Maintains end-user message-boxes and provides authorised access to the messages
e Receives messages from other repositories (for locally serviced users only)

e Allows routing messages to other repositories

e Sends and receives message delivery receipts

In this particular design, the end-user registration function is provided as an AP, so that registration can
be implemented on a Request To Pay application.

Repository implementation is subject to a broad range of functional requirements described in chapters 4,
5 and 6. We will not re-state these requirements here.

All received messages are placed in a processing queue in the repository. A process (denoted as
“Message Transfer Agent” in Figure 17) asynchronously retrieves messages from the queue and performs
necessary actions. Actions may include:

1. For messages where receiver address is on the present repository, deliver message to
local message-box

2. For messages where receiver address is on a remote repository, attempt delivering the
message to a remote repository. If delivery fails, handle errors as described by resilience
requirements in section 6.6. Should a retry be needed, return the message to the queue
(with information on when to retry).

This section details APIs that repositories are required to implement in order to ensure interoperability
with other service operators.

37

Collaborative Requirements and Rules for the End-User Needs Solutions

All application support APIs are invoked over TLS and require mutual TLS authentication for validating the
calling party. The message repository may at any point check validity of the presented client certificate.

End-user authentication service

This service allows end-users to use any app to connect to any repository. The App is essentially
delegating authentication to repository, which in turn issues a token to the app. This token can then be
used by the app to call APIs.

Payer Payer app Pater repo oAuth Payer repo API Index TPP check
T T T T

| |
} Open App }
! |
| I
| I
I
I
|

T
I
|
I
|
1
I
i
repo login page |

. Redirect to Payer

Validate scope and

I
£ ’ .
ntér registration data other params

Enter login

information

|
I
|
|
|
|
I
|
|
|
|
|
|
|
|
|
Present login form !
|

Redirect to Payer

|

|

|

|

|

|

|

|

|

|

|

i

|

|

|

|

|

|

§ 1 Get redirect URL
l (unless cached)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|

|
i
|
|
)
F
|
|
|
|
|
|
|
|
l auth_code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

App with 1 !
I ‘l |
'\ I |
l auth_code : }

A |
! ' Validate !
f parameters |
' Token | i
1 1 |
1 | Call APIs i
1 1 |

Figure 18 Auth2 applied for authenticating user from any app

End user authentication service must comply with RFC 6749 oAuth 2 specification and implement
“Authorisation Code Grant” flow. The authentication initiation request /authorise, must be sent with
following values of mandatory parameters:

Parameter Status Value

response_type Mandatory Value MUST be set to “code”

client_id Mandatory Fingerprint of the TPP certificate provided during accreditation

scope Mandatory Value MUST be set to “request-to-pay-app”

state Recommended Opaque value set by the client

redirect_url Optional This parameter can be used to select one of pre-registered redirect URLs
listed in the index. If not supplied, the primary URL registered in the index
will be used.

Table 4 Mandatory parameters for authentication initiation request

Note that any redirect_url supplied in the request can only be used to select one of pre-registered
URLs, not to specify a new one. Values of redirect url are centrally managed for security reasons.

List requests

API Endpoint

List my requests GET
/user/requests[?filter="sent” | "received” [&from=<fromval>[&to=<toval>]]]

/:lu

Security: | Requires end-user authentication token (access-token)

Inputs Outputs

filter If parameter value “sent” is specified, list only | 200 OK JSON DATA JSON Array or Requests,
Requests sent by the current user. categorized as sent and received
If parameter value “received” is specified, list RTPs and details of each requests.

only Requests received by the current user.
If parameter is not specified, list all Requests
for the current user

Any other value, return an error.

from UTC timestamp

to UTC timestamp

app-id The unique application Id

38

Collaborative Requirements and Rules for the End-User Needs Solutions

profile
‘RTP’

A string identifies it as a RTP request — always

Headers

Errors

401 Not Authorised

If the certificate presented does
not entitle the caller to execute this
API|

400 Bad request

Invalid parameter supplied

500 Server Error

Internal Server Error

404 No data

No Data Found

Get messages for a request

API

Endpoint

Get all messages for a request

GET /user/<RQID>/messages

Security: | Requires end-user authentication token
Inputs Outputs
Uri path: RQID Unique ID of the Request to 200 OK JSON DATA JSON data: An array of
Pay Message objects containing
messages associated with RID
Headers Errors
filter If parameter value “sent” is 500 Server error Internal Server Error
specified, list only messages
sent by the current user.
If parameter value “received”
is specified, list only messages
received by the current user.
If parameter is not specified,
list all Requests for the current
user.
app-id The unique application id 400 Bad request Malformed data supplied
from UTC Timestamp 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API
to UTC Timestamp 404 No Data Found No Data Found

Send a message

API

Endpoint

Send a message

POST /user/<RQID>/messages?PID=[PID]

Security:

Requires end-user authentication token

Inputs

Outputs

JSON data: A message Object
to send

Request to Pay data

200 OK JSON Data Message accepted for delivery.

JSON data: RQID, Message ID

Uri query: PID Primary user identifier sending
the message
Uri path: RQID Unique ID of the Request to
Pay
Headers Errors
app-id The unique application id 500 Server error Send message error

400 Bad request Malformed data supplied

401 Not Authorised If the certificate presented
does not entitle the caller to

execute this API

Send a message (bulk)

API

Endpoint

Send a message (bulk)

POST /user/messages?PID=[PID]

Security:

Requires end-user authentication token

Inputs

Outputs

JSON data: An array of
message Object to send

Request to Pay data

200 OK JSON Data Message accepted for delivery.
JSON data: An array of {RQID,

Message ID}

Headers

Errors

39

Collaborative Requirements and Rules for the End-User Needs Solutions

app-id

The unique application id

500 Server error

Send bulk messages error

Uri query: PID

Primary identifier of the user

400 Bad request

Malformed data supplied

401 Not Authorised

If the certificate presented
does not entitle the caller to
execute this API

Register a new User

API Endpoint

Register a new User in Repository POST /user

Inputs Outputs

JSON data: User Object to New User Data 201 OK

register

Headers Errors

app-id The unique application id 500 Server error User registration error

400 Bad request

Malformed data supplied

User Management

API Endpoint
Get existing User Details GET /user
Update existing User Details PUT /user

Security: | Requires end-user authentication token
Inputs Outputs
200 OK User Data
JSON data: User Object User Data to be updated 200 OK JSON Data OK
Headers Errors
app-id The unique application id 500 Server error Internal Server Error
400 Bad request Malformed data supplied
401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API
404 No Data Found No Data Found
User Login
API Endpoint
Login existing User GET /user/login
Inputs Outputs

JSON data: User Login Object

User Login Data

200 OK X-RTP-Access-Token
(Res: headers)

Access Token to be send in
further user API calls

Headers

Errors

app-id

The unique application id

500 Server error

Internal Server Error

400 Bad request

Malformed data supplied

404 No Data Found

No Data Found

User Logout

API Endpoint

Logout an existing logged in User PUT /user/logout?user=[user-id]

Inputs Outputs

Uri: query | User id of the user 200 OK JSON Data | Message to user
Headers Errors

app-id The unique application id 500 Server error Internal Server Error

400 Bad request

Malformed data supplied

404 No Data Found

No Data Found

40

Collaborative Requirements and Rules for the End-User Needs Solutions

User Lookup

API

Endpoint

Get existing User alias

GET

/user/lookup?mobileNumber=[mobileNumber] | email=[email]

Security:

Requires end-user authentication token

Inputs

Outputs

Uri: query - mobileNumber
Uri: query - email

Mobile Number of the user
Email of the User

200 OK JSON Data

PID of the searched user

Headers

Errors

app-id

The unique application id

500 Server error

Internal Server Error

400 Bad request

Malformed data supplied

401 Not Authorised

If the certificate presented
does not entitle the caller to
execute this API

404 No Data Found

No Data Found

Blocked User Management

API

Endpoint

Get all blocked users
Unblock a user

GET /user/blocked
DELETE /user/{PID}/blocked

Security: | Requires end-user authentication token
Inputs Outputs
200 OK JSON Data Array of blocked PIDs
Uri: path - PID PID of the user to unblock 200 OK JSON Data PID of the unblocked user
Headers Errors
app-id The unique application id 500 Server error Internal Server Error

400 Bad request

Malformed data supplied

401 Not Authorised

If the certificate presented
does not entitle the caller to
execute this API

404 No Data Found

No Data Found

All repo-to-repo APIs are secured via TLS and authenticated via TLS mutual authentication.

Send Message

API Endpoint
Send a message POST /repo/{RQID}/messages
Inputs Outputs

JSON data: A message Object
to send

Message data

200 OK JSON Data

Message accepted for delivery.
JSON data: RQID, Message ID

Uri: path - RQID Request Id
Headers Errors
repo-id Sender repository id 400 Bad request Malformed data supplied

401 Not Authorised

If the certificate presented
does not entitle the caller to
execute this API

Process a Request

API Endpoint
Process a request POST /repo/{RQID}/process
Inputs Outputs

JSON data: A message Object
to send

Message data

200 OK JSON Data

Message processed.

Uri: path - RQID Request Id

Headers Errors

repo-id Sender repository id 400 Bad request Malformed data supplied
profile Always “RTP” 500 Server error RTP Process error

41

Collaborative Requirements and Rules for the End-User Needs Solutions

Active Users

API Endpoint
Total active users GET /qos/users
Inputs Outputs
200 OK JSON Data Users data count provided,
grouped by registered
applications in the repository
Headers Errors
500 Server error Error in getting data
404 Not Found No data found

Threads (Requests)

API Endpoint
Total Threads (RTPs) GET /qos/threads
Inputs Outputs
200 OK JSON Data Threads’ (RTPs) data count
provided, for the Repository
grouped by thread state -
‘Active’, ‘Overdue’,
‘Completed’
Headers Errors
500 Server error Error in getting data
404 Not Found No data found

Messages Processed

API Endpoint
Total Messages Processed GET /qos/messages
Inputs Outputs

200 OK JSON Data

Messages Processed data
count provided, including
status of messages for the
Repository grouped by type of
messages — ‘sent’, ‘received’,
‘failed’

Headers

Errors

500 Server error

Error in getting data

404 Not Found

No data found

Transactions (Money Processed)

API Endpoint
Total Transactions Processed GET /qos/transactions
Inputs Outputs

200 OK JSON Data

Transactions Processed
amount provided, including
type of transaction for the
Repository grouped by type —
‘processed’, ‘requested’

Headers

Errors

500 Server error

Error in getting data

404 Not Found

No data found

This section presents preliminary data model for the repository. Compliance of the Repository
implementation is based on APl compliance, and any data model that supports the APIs would be
appropriate. In fact, repository operator does not need to disclose their data model as long as APIs are

compliant.

42

Collaborative Requirements and Rules for the End-User Needs Solutions

Consumer IDV data

Table — IDV data

Name Type Description

user_id String User ID in this repository. This is the first part of the PID.
auth_first_factor String First authentication factor. May be password hash.
auth_second_factor String Registered application name. May be memorable word.
Title String Person’s title such as Mr, Ms, Mrs, Miss, Dr etc.

First name String First name

Middle name String Middle name

Surname String Surname

Address Text Address

Post code String Post code

Account number Interger | Account number

Sort code String Sort code

Message data

Table — Message data

Name Type Description

Message ID 64bit int | Unique identifier of the message within a Request to Pay thread

RQID String Unique ID of the Request to Pay. Can be viewed as a unique ID of the
thread.

PID String Primary ID the message is addressed to.

Sender PID String Primary ID of the message sender.

In addition, the Repository operator would store a variety of transient data such as a token store in
support of the oAuth2 implementation, or caches of TPP certificates, TPP APl endpoints and certificates.
This is implementation-specific transient data and is not detailed here.

Request to Pay Applications provide an interface for interacting with the service. Applications must be
accredited to become part of the Request to Pay system.

Applications interact with repositories using repository APIs. In terms of interactions defined in the
“standard” repository APIs, all accredited applications must be equally serviced by repositories. Where
repositories publish extended set of APIs, applications may use this extended set based on separate
agreement, provisioning and governance between applications and repositories.

There are several types of applications that are envisioned as part of the service, primarily distinguished
based on audience or the type of organisation operating the application.

e Consumer applications
o PISP/ Fintech / innovator applications
o Bank operated applications
e Business applications
o Third-party request to pay business applications
o Biller operated
o Bank operated applications

Applications are core part of the ecosystem model presented in Figure 3 — Request to Pay ecosystem, and
present broad competitive space for a variety of operators and integrators.

43

Collaborative Requirements and Rules for the End-User Needs Solutions

Application functionality is described in detail in End-User requirements documentation, as well as
previous study [Ref Z] of user experience and interaction design. Further, applications are subject to a
range of requirements defined in chapters 5 and 6.

Application can connect to one or more of the user’s message boxes (hosted on one or more
repositories). After authenticating user with the respective repository for each message box, the
application presents an interface to the user to view each request and associated messages.

A colour scheme may be used by the application to indicate status of the request — e.g. pending (amber),
overdue (red), paid (green or grey). Similar visual cues should indicate whether payee is verified via
Account Name Verification Service or Confirmation of Payee etc.

Where applicable, the application must provide the user with actions to take in response to a request.
Actions include — Pay all, Pay partial, Decline request, Request Payment Period Extension for each request.

Applications must include a facility to initiate payments. Regardless of the payment mechanism, the
application must:

1. Make best effort to only send “Pay all” and “Pay partial” messages if the electronic payment was
successful (e.g. for non-immediate payments, initiation and all checks are performed without
failure)

2. Must not send any messages to Biller in case payment fails.

44

Collaborative Requirements and Rules for the End-User Needs Solutions Dec 2017

3 Request to Pay Demonstrator

The objective of the Request to Pay demonstrator is to validate:

e Architecture approach
e Messaging patterns
e User experience

It is therefore expected that interactions between components are as close to reality as possible, while
actual component implementations are less relevant.

To accelerate implementation, a following set of tools has been proposed.

iOS Application

Native iOS application

Or Responsive design
Mobile Web app

Other interfaces
Control interface web app
Corporate biller web app

Index Repository

Apigee 127 uSvc Apigee 127 uSvc
Docker container Docker container
Cloud hosting Cloud hosting

Data
MySQL or Apache usergrid
Docker container
Cloud hosting

Figure 19 Preliminary components and implementation technologies for RtP demonstrator

In order to avoid complex licensing terms, only non-commercial open source components are to be used.
However, this will reduce the out-of-the-box functionality especially in the API Platform part - features
from commercial API platforms such as traffic management, oAuth2 implementation and analytics may
not be available out of the box.

Components are to be hosted in the cloud (AWS or GCP), and each of the infrastructure components
(repository, index) is to be encapsulated in a deployable Docker image.

TLS Certificates will be manually created for imaginary TPPs operating repositories or Applications. TLS
termination and certificate checks may be implemented in a custom component or using native cloud
features.

Depending on use cases, the demonstrator will need to be able to operate a minimum of three
repositories.

Application implementation may be either iOS native or a single-page Web Application with responsive
design (rendering on mobile and desktop browsers).

Should time allow, a demonstration of command and control interface may be designed with mock data.

Should time allow, a demonstration of what a corporate Biller application may look like (e.g. for bulk
requests) may be designed. Should time allow, this design may connect to Repository demonstrators.

45

Collaborative Requirements and Rules for the End-User Needs Solutions

An APl (Application Programing Interface) defines the bridge for communication between an
application and the backend service. These interfaces provide a pre-determined set of communication
“methods” along with input/output parameters for sending and receiving messages for
communicating with an application over the network.

RESTful web APIs, provide a simplified approach for communication using the http protocol and REST
APl design principles. In this document, we would look at the guidelines and design standards to be
followed for building a RESTful API. These standards will help to design APIs that are intuitive and can
be easily understood and consumed by developers consuming them.

APl URLs must follow a naming conventions that meets the following criteria:

e It must provide the address or location of the server hosting the API

e It must specify the service name of the API

e It must specify the version of the API service

e It must specify the resource on which the service operation is being performed
e It must follow a hierarchical approach for traversing nested sub-resources

Following convention must be followed for forming the API URL:
http[s]:/[<server-name>)/api/[<service-name>|
where

e server-name - The hostname or IP given to the installed web server that is running the API.
e service-name - The APl name of the service you want to access
Example: ‘https://api.<companyname>.com/api/amenities’

Versioning is an important aspect of APl design. Every APl must have a version number associated with
it. Hence, the URL must specify a version number to identify the version of the API. There are various
approaches for versioning. But to keep things simple, it is recommended to use an integer number
prefixed with a 'v' to denote the version of the API.

Example: ‘https://api.<companyname>.com/api/amenities/vl’

A URI consists of segments separated by forward slashes (‘/'). Each segment must identify a resource. If
a resource has sub-resources, the URI must specify the path to the sub-resource in a hierarchical
manner as follows:

/resource/path/to/sub-resource

Example: ‘https://api.<companyname>.com/api/amenities/v1/£lights/UA881/cabin

46

Collaborative Requirements and Rules for the End-User Needs Solutions

Every resource of an RESTful APl must have a meaningful name to identify itself. It is recommended to
name a resource using noun as opposed to verb or action. The URI of the resource must refer to a
thing rather than an action. Also, CRUD function names should not be used in the resource names.
Hence use of resource names like ‘getflights’ to retrieve information about flights must be avoided.

A collection of resources can be named using a plural noun. Eg.
/api/amenities/v1/£flights

Following are some of the recommended naming conventions for URI Path for a RESTful API

e Name collection resource with plural noun: Eg.
http://api.foo.com/api/amenities/vl/flights

e Name singular resource with singular noun : Eg.
http://api.foo.com/api/ameneties/v1/flights/UA123

e Name a controller resource using a verb : Eg.
http://api.foo.com/api/amenities/v1/£flights/UA123/book

e Avoid using CRUD operation names in the URIs. For example, do not use URIs like
http://api.foo.com/api/amenities/vl/getflights

e Use lowercase for naming URIs. Avoid mixed and upper cases in URIs. Mixed case is
harder to type in and read.

e Use hyphen instead of space or underline. They are aesthetic and easier to read.
Spaces in URL will get transformed into URL encoded %20s, degrading readability

further. For example, use URIs like http://api.foo.com/api/about-us

e Avoid using characters that require URL encoding. Eg. Spaces

A resource can be a single instance of an object or a collection of objects. For example, a collection of
flights can be represented by the object ‘/flights’. Again, a single flight within this collection can be
identified by the flight number as '/flights/fUA123". There can be further objects that can be related to
each other either as parent child or in some other ways. For example, a flight may have different
amenities. Hence ‘amenities’ can be a sub-resource of a parent ‘flight’ resource and can be related as
follows: /flights/UA123/amenities

The following approach should be followed for designing URI path with resources and related sub-
resources:

URL Description

/servicename/v1 This is the entry point for the API

/servicename/v1/{ResColName} Resource name of a top-level
collection

/servicename/v1/{ResColName}/{Resld} A resource instance within the

collection of resource

47

http://api.foo.com/api/about-us

Collaborative Requirements and Rules for the End-User Needs Solutions

/servicename/v1/{ResColName}/{Resld}/{SubResColName} A sub-resource collection under the
resource Resld

/servicename/v1/{ResColName}/{Resld}/{SubResColName}/{SubRedId} SubRedld inside the collection of
SubResource

Table 5 URL and description

After identification of the resources, the next question is about the action to be performed on these
resources. A HTTP verb is normally used to specify the action to be performed. It forms an important
part of RESTful API design. The primary and most commonly used HTTP verb are POST, GET, PUT and
DELETE. These verbs help to perform the CRUD operations on the resource. As a guideline, these verbs
should be used as follows:

e GET - Used to retrieve or read the information about the requested resource entity identified
by the request-URI

e POST - Used to create a new resource, which is subordinate to the parent resource identified
by the request URI

e PUT - Used to update an existing resource entity identified by the request URI
e DELETE - Used to delete the resource represented by the request URI

Other HTTP verbs like PATCH, OPTIONS and HEAD can be used for specific usage requirements

The API request or response body content is referred to as the APl payload. There are many options
for exposing the API payload. But in the RESTful world there are 2 well adopted formats — viz. JSON
and XML. JSON is the preferred of the two due to the following benefits that it offers over XML:

e JSONis a more compact format, meaning it weighs far less on the wire than the more verbose
XML. It is a good benefit for mobile devices with a limited bandwidth to save costs and
improve loading speed.

e JSON parsing is generally faster than XML parsing.
e JSON is easier to work with in some languages (such as javascript, python, and php)
e Formatted JSON is generally easier to read than formatted XML.

e JSON specifies how to represent complex datatypes, there is no single best way to represent a
data structure in XML.

Due to these advantages, JSON data format should be preferred and default format used to specify the
RESTful API payload. XML output can be supported based on the ‘Accept’ header specified in the
request.

One area of REST API design that warrants attention is the use of "Media Types", which are also
known as either MIME Types or Content Types. Media types have the following syntax:

type "/" subtype *(";" parameter)

48

Collaborative Requirements and Rules for the End-User Needs Solutions

REST APIs typically work with media types that fall under the "application" type. Note that parameters
may follow the type/subtype in the form of attribute=value pairs that are separated by a leading semi-
colon (;) character. HTTP/1.1 uses media types in the values of the ‘Accept’ and ‘Content-Type’
headers. As shown in the example below, client applications can convey their preference for a
response body's media type using HTTP/1.1's "Accept’ request header.

Accept: application/json,application/xml;g=0.9,text/html;g=0.8,*/*;g=0.7

In the 'Content-Type’ header of an HTTP/1.1 request or response, a media type reference indicates the
"type" associated with the message body's byte sequence. The example below demonstrates a
Content-Type header value that references a media type with a "charset" parameter:

Content-type: application/json; charset=I150-8859-4

REST APIs use either the "application/json" or the "application/xml|" media type in the ‘Content-Type’
header of an HTTP/1.1 request or response.

Communicating error information properly to the APl consumer is critical for the success of the REST
API. APl consumers and app developers using APIs learn to write code through errors. Well defined
error messages are helpful for troubleshooting and resolving issues after the applications built using
the APIs are in the hands of the end users.

RESTful APls must communicate error information using proper HTTP response status code. There are
different types of HTTP response status codes to communicate the different success and error
information as follows:

e 2xx: Success — Used to communicate that the request from the client was successfully
received, understood, and accepted

e 3xx: Redirection — Used to communicate that additional action needs to be taken by the user
agent like browser in order to fulfil the request

e 4xx: Client Error - Used to indicate errors caused by the client

e 5xx: Server Error — Used to indicate that server is aware that an error occurred while
processing the request and cannot process it further

Http Error Response The following table summarizes the HTTP error response codes that may be
returned by the APl under different error scenarios.

Bad Request Indicates that the request had some mal-formed
syntax error due to which it could not be
understood by the server. Probable reason could
be missing mandatory parameters or syntax error

400

Unauthorized Indicates that the request could not be
authorized possibly due to missing or incorrect
authentication token information

401

Forbidden Indicates that the request was understood by the
server but it could not be processed due to some
policy violation or the client does not have
access to the requested resource

403

49

Collaborative Requirements and Rules for the End-User Needs Solutions

104 Not Found Indicates that the server did not find anything
matching the Request-URI
105 Method Not Allowed Indicates that the method specified in the
Request-Line is not allowed for the resource
identified by the Request-URI
109 Conflict Indicates that the request could not be processed
due to a conflict with the current state of the
resource
114 Request URI Too Indicates that the Request URI length is longer
Long than the allowed limit for the sever
Unsupported Media Indicates that the request format is not
415
Type supported by the server
129 Too Many Request Indicates that the client has submitted the
request too often and needs to slow down
500 Internal Server Indicates that the request could not be processed
Error due to an unexpected error in the server.
501 Not Implemented Indicates that the server does not support the
functionality required to fulfil the request
502 Bad Gateway Indicates that the server while acting as a
gateway or proxy received an invalid response
from the backend server
503 Service Unavailable Indicates that the server is currently unable to
process the request due to temporary overloading
or maintenance of the server. Trying the request
at a later point of time might result in success
504 Gateway Timeout Indicates that the server while active as a
gateway or proxy did not receive a timely
response from the backend server

Along with the Http error status code, the response message must also provide additional information
to clarify the error. The following payload format can be used to communicate additional information
about the error:

{

“status” : {status [optionall]l},
“code” : {code [optional]} ,
“message”: “Error message”,
"errors": [optional]
[
{ "code": {error code},
"message": "Error message"

}
1 Extra fields can be added as needed. The errors array is an optional attribute, which will often be

used when the service captures multiple errors to return to the consumer.

Example for error message payload is as follows:

“status” : 400,

50

Collaborative Requirements and Rules for the End-User Needs Solutions

“code” : 40010,
“message”: “SMS message body is not specified”,
"errors": [

{ "code": 1, "message": "SMS message body is required"

{ "code": 2, "message": "SMS recipient is required" }

51

Collaborative Requirements and Rules for the End-User Needs Solutions

Further a need was identified to understand when a request is “closed”, under which
conditions and what end states of the request are possible.

End states

General approach is that there are two way to close the request:

e Payment made in full
e Requestdeclined
e Payment period ends

Following end-states are currently under consideration:

e Paidfully
= Description: The request is paid by the Payer
= Typical cases: The full amount is paid before the end of the payment
period (either with a single Pay-all payment or multiple Pay-partial
payments)

e Paidpartially
» Description: The request is partially paid, but the payment period has
expired
= Typical cases: While a partial payment has been made, payment period
has ended without full payment.

e Not paid
» Description: The payment period has expired without a payment being
made
= Typical cases: Payer ignored the request and has not made a payment.
e Rejected

= Description: The Payer has rejected the request
= Typical cases: Payer did not recognise the charge or has made the
payment outside the RtP system.

It is worth noting that requests will only ever be soft-closed. That is to say, no data is deleted
and no irreversible action is performed on the request; the “message thread” remains, and
both biller and payer are able to post new messages (e.g. contact biller / contact payer would
still be possible).

In effect, the biller and payer applications would determine the status of a request by analysing
messages in the thread.

Payer end state (without biller reconciliation)

From the Payer’s perspective, requests are “closed” based on Payer actions (e.g. pay, decline
etc.) There are several good reasons for this.

A. Payer applications would only send a message when a payment (to the account

52

Collaborative Requirements and Rules for the End-User Needs Solutions

specified by the Biller) is successful.

B. Request to Pay ensures that Payee account is part of the request, and is validated
using Confirmation of Payee, and therefore it is very unlikely that the payment would
be made to wrong account.

If a biller determines that the payment has not been made (despite RtP message), biller should
have a facility to reopen the request via additional Request to Pay message. This is preferred to
contacting the payer out-of-band or activating delinquency process.

Biller end state (with biller reconciliation)

As discussed, biller end state is determined by biller's accounting systems.

If we take the position that biller acknowledgement is required to “close” the Request to Pay
for biller — for example after account reconciliation on biller side - biller application would be
required to detect payment of a particular request and send a message to acknowledge
payment.

In this case, a paid request would remain open (or perhaps somewhere between “open” and
“closed”) until acknowledgement is received, even if payment period ends. This also has
ramifications on the “Paid partially” end state — where the request would remain open until
biller confirmation of the partial payment.

Main benefit of this approach is that biller state is accounted for in “closing” the request.
However, this also has some drawbacks.

e Should this interim state be exposed to end users (payer in this case) - this may seem
odd to the end-users who are not used to having visibility of biller settlement. Could
be particularly difficult in case settlement takes days or weeks.

e This may increase complexity of biller applications as they must send
messages to acknowledge payment for each payment on each request.

« This would increase the complexity of entering end-states — as reconciliation may
take any amount of time, closing of requests may need to be delayed beyond end-
date (also applies to partial payments where we may need to wait for multiple
settlement messages).

53

Collaborative Requirements and Rules for the End-User Needs Solutions

In this section, we enumerate functional requirements established to date. This section is work

in progress.

54

Category
General
TPP

TPP

TPP

End-user
Repository

Repository
General
General

Index
General

Index

Index

Index
General

General
General

General
General
General
Application
General

General
General

Application
Application
General
Application
Index

Number
G1
T2
T3
T4

R1

R2

G2

G3

G6

G7

G8
G9
G10
Al
G11

G12
G13

A2
A3
G14
A4

Functional requirement

Request to Pay implementations must be invariant to payment methods.

Allow Third-Party operators to operate end-user applications

Allow Third-Party operators to operate message repositories

Provide a central Third-Party registry that provides standard PKl infrastructure, including
issuing certificates and real-time certificate revocation checks.

Allow end-users to register with Third-Party providers

Support transporting messages between Payer and Payee who may have different service
providers (third party operators).

Support any number of messages associated with a specific request to pay, and easy
retrieval of all message associate with a specific Request to Pay.

Support message attachments so that a bill may be attached to a request, or a receipt
may be attached to responses.

Support validation of message format and type in the context of original request, to
provide assurance message can be understood by the other party

Support validation of Payee details by Payer — e.g. via Confirmation of Payee

DUPLICATE of R1 - Support transporting messages between Payer and Payee who may
have different service providers.

Support mutual authentication between any two third-party providers for each
transaction between them.

Support mutual authentication between central infrastructure and third party providers
for each transaction.
Support real-time checks of Third-Party provider identity
Support message authentication codes that will prevent tampering with a message in the
delivery path.
Each participant in message delivery (repository, application) must provide confirmation
of message receipt and notification of failure to deliver a message.
Each participant in message delivery (repository, application) must provide a facility to
retrieve all messages associate with a specific Request to Pay
Support uniquely identifying end-users based on a PID
Support email and mobile phone number as PID aliases
Support end users who do not have a bank account as Payers
Third-Party Application providers must support at least one electronic payment method
The service implementation must not exclude cash payments, however Third Party
provider may choose not to provide this facility
The service implementation must not exclude end-users who do not have smart devices
The service implementation must not exclude end-users who do not have internet
connectivity
Request to Pay may only be generated with a full PID of the Payee
Request to Pay may only be generated if a Payee has a bank account on file
Associating a Payee with a bank account must involve Confirmation of Payee check
Payer must clearly see the result of Confirmation of Payee query on the Payer
When looking up an alias, Index must not disclose PID but must rather return only the
Repository endpoint for the given alias.

Table 6 Functional requirements

Collaborative Requirements and Rules for the End-User Needs Solutions

55

