

2

Version / Document History

3

4

5

What is Request to Pay?

6

 service design and architecture

Payments strategy forum. Once finalised, they will be handed over to the NPSO, who will be

responsible for administering them. The requirements will serve as a core standard on which

the competitive market can build rich and compelling propositions for the benefit of end-users.

7

Figure 1 Request to Pay overview Figure 1 Request to Pay end-to-end journey

8

9

10

Figure 2 API Platform and key functions

11

Repository Software
Vendors

Repository (Cloud)
Service Vendors

Central Infrastructure
Operator

Business Application
for RtP Software

Vendors

Mobile and Web App
Developers

Repository Own
Implementation

Consumer

Kiosk or Counter
service operator

ConsumerUtility Airline Consumer

Integrators

Figure 3 A view of the Request to Pay participant Ecosystem

API Definition:

12

13

14

15

16

Figure 4 High-level solution architecture

17

RtP Accreditation Scope

PSD2 and OB
Accreditation Scope

PSD2 / OB PISP
Accreditation

RtP TS Compliance
Accreditation

RtP Technical
Standards

Compliance Test
Suite

PISP
Accreditation

Criteria

TPP RtP implementation

RtP IDV

PSD2 TPP
Application

 Figure 5 PSD2 and Technical Standards accreditation scope for Request to Pay providers

18

Table 1 Primary Identifier for various users

Figure 6 Primary Identifier

PID

User-id # Repo-Id

Mobile number

Email

Other aliases

19

Figure 7 Onboarding based on existing relationship

Figure 8 Onboarding based on new relationship

20

o

o

o

o

o

o

o

o

21

22

o

o

23

 Figure 9 Request to Pay user journey

Figure 10 Request to Pay PaymentPal user journey

24

ASPSPPISP

Payer Payer App Payer repository Bank Biller repository Biller app Biller

Open App

Retrieve requests

Show requests

Select Pay all

Redirect to bank login page,
containing payment instruction data

Bank authenticates user
(SCA).

User Authorises Payer app
to execute transaction

Redirect to Payer App with Auth Code
supplied by the bank (PSD2 dynamic

linking)

Payer app exchanges auth code for a token. Auth
code and Payer app certificate checked by the bank

Payer app calls banks Payment API. Token and Payer
App certificated checked by the bank

Pay all message sent to
Biller, with payment

receipt from the bank.

 Pay all message routed
to Biller repository

HTML forms served by the
bank under PSD2.

Biller app retrieves
message (push or pull)

Biller sees the
message.

Enter login details

Authorise
transaction

Receipt show to
the user

Figure 11 Execution flow for PSD2 payment

25

1.

Figure 12 Solution walkthrough

26

Category Number Functional requirement

General G1 Request to Pay implementations must be invariant to payment methods.

TPP T2 Allow Third-Party operators to operate end-user applications

TPP T3 Allow Third-Party operators to operate message repositories

TPP T4 Provide a central Third-Party registry that provides standard PKI infrastructure, including
issuing certificates and real-time certificate revocation checks.

End-user E1 Allow end-users to register with Third-Party providers

Repository R1 Support transporting messages between Payer and Payee who may have different service
providers (third party operators).

Repository R2 Support any number of messages associated with a specific request to pay, and easy
retrieval of all message associate with a specific Request to Pay.

General G2 Support message attachments so that a bill may be attached to a request, or a receipt
may be attached to responses.

General G3 Support validation of message format and type in the context of original request, to
provide assurance message can be understood by the other party

Index I1 Support validation of Payee details by Payer – e.g. via assurance data

General G4 Support transporting messages between Payer and Payee who may have different service
providers.

Index I2 Support mutual authentication between any two third-party providers for each
transaction between them.

Index I3 Support mutual authentication between central infrastructure and third party providers
for each transaction.

Index I4 Support real-time checks of Third-Party provider identity

General G5 Support message authentication codes that will prevent tampering with a message in the
delivery path.

General G6 Each participant in message delivery (repository, application) must provide confirmation
of message receipt and notification of failure to deliver a message.

General G7 Each participant in message delivery (repository, application) must provide a facility to
retrieve all messages associate with a specific Request to Pay

General G8 Support uniquely identifying end-users based on a PID

General G9 Support email and mobile phone number as PID aliases

General G10 Support end users who do not have a bank account as Payers

Application A1 Third-Party Application providers must support at least one electronic payment method

General G11 The service implementation must not exclude cash payments, however Third Party
provider may choose not to provide this facility

General G12 The service implementation must not exclude end-users who do not have smart devices

General G13 The service implementation must not exclude end-users who do not have internet
connectivity

Application A2 Request to Pay may only be generated with a full PID of the Payee

Application A3 Request to Pay may only be generated if a Payee has a bank account on file

General G14 Associating a Payee with a bank account must involve Confirmation of Payee check

Application A4 Payer must clearly see the result of Confirmation of Payee query on the Payer

Index I5 When looking up an alias, Index must not disclose PID but must rather return only the
Repository endpoint for the given alias.

Table 2 Functional requirement summary

27

Figure 13 Service Architecture

identifier. In many ways, this system is similar to email delivery system.

Client applications are akin to email readers, and may allow end users to read messages from

multiple message-boxes. End user accounts are held by repositories, in a similar manner to email

where user identity is with the server. Central “Index” performs discovery functions, similar to the

way DNS services are used to query MX records and resolve mail server addresses.

Key differences between this system and email are:

 Security is stepped up across the board and is intrinsic to the service design. Parties

operating applications and repositories are accredited and all communication is

over HTTPS by default. Other features (e.g. message authentication etc.) are also

considered.

 Use of modern protocols (RESTful APIs over HTTP) as opposed to traditional SMTP

and IMAP. This allows implementers to reuse broad range of modern off-the-shelf

solutions, tools, architectural and security patterns for a variety implementation and

deployment scenarios.

 Messages transported by this system are structured – as opposed to freeform

payload of email messages. Messages in this system are machine readable, which

enables automation of message processing (e.g. bot responders).

28

repository

Messages are structured JSON objects, allowing machine processing and automation. Each message

consists of several sections encapsulating:

 Message metadata

 Transport metadata

 Thread information

 Message content

Sample message with comments on types, typical values and value options for Request to Pay is

shown below.

{

"threadHeader": { // To be added by the message creator (App) "profile": "RequestToPay",

"threadID": "user1-repo1-user2-repo2-timestamp_nano-64_bitsrandom", "requestType" : "new/existing",

"serviceDetails" : "string like Window Cleaning", "created": "<Time in millis>",

"mac": "47863587653C6674A24234A85878FFB727646"

},

"threadMeta" : { //To be added by Repository "senderPID": "dileep017#Repository1", "recipientPID": "seandoh#Repository1",

"num-messages": 33

}

"messageHeader": { // To be added by the message creator (App) "messageId": "timestamp_nano-64_bitsrandom", "created":

"<Time in millis>",

"senderPID": "dileep017#Repository1", "recipientMobileNumber": "07825853192", "recipientEmail": "string",

"mac": "47863587653C6674A24234A85878FFB727646"

},

"messageMeta" : { //To be added by App or Repository with whom this info is available "senderName": "dileep g",

"recipientPID": "seandoh#Repository1",

}

"deliveryMeta": { //To be added by Repository

"deliveryStatus": "<arrived/delivery-succeeded/failed-delivery-($failed-reason)>", "deliveryPath": [{

"from": "192.0.0.1",

"to" : "<RepositoryID>" "repositoryType" : "<Sender/Receiver>" "senderCert": "C6674A24234A85878FFB",

29

"timestamp": 1404869611938,

 }, {

}]

},

 "from": "192.0.0.2",

"to" : "<RepositoryID>" "repositoryType" : "<Sender/Receiver>" "senderCert": "C6674A24234A85878FFB",

"timestamp": 1404869611938,

 "messageBody": { // Generated by the message creator (App) example below for RequestToPay profile "messageType" :

"PayAll| PayPartial| ReqPayExtension| Decline| DeclineBlock| NoteToBiller|

RequestToPay| ExtensionGranted| ExtensionDeclined| NoteToPayer", "paymentAmoutRequest" : "number",

"currency" : "GBP",

 "paymentDueDate" : "Epoch time in millis", "extensionDateRequested" : "Epoch time in millis", "paymentRequestedDate":

"Epoch time in millis", "accountDetails": {

"accountNumber": "Sender’s Account Number", "sortCode": "Sort Code of the Bank"

},

"paymentAmout" : "number", "paymentDate" : "Epoch time in millis", "note" : "Note by Sender", "Attachments": {

[{

"file-name": "file1.pdf",

"content": "base64",

"mac": "2837648275878FFB727646"

}]

},

"mac": "28376482736C6674A24234A85878FFB727646"

}

}

30

Payer Device App Store Payer App Payer repository Index alias lookup

Open App Store

Find a RtP App

Install App

Enter registration data
Open RtP app

Perform ANVS

Request Account
Creation

If alias is supplied,
register alias to PID

Check alias not taken
Store aliasReturn PID

Account created, PID
presented to user

Figure 14 Sequence diagram to show Request to Pay installation using App store

Biller Biller application Biller Repository OCSP Index TPP check Index alias lookup Payer Repository Payer Application Payer

Create a RtP

Call API

Optional OCSP
check of biller app

cert

Optional TPP check
of Biller app

registration status

If RtP does not
include a PID or

Payer, look up PID

Submit the RtP to
Payer repository

Payer app retrieves
the request (push

or pull)

Optional OCSP check of biller
repository certificate

Optional TPP check of Biller repo
registration status

Payer app notifies
user of a new

request
Delivery receipt

Delivery receipt

Figure 15 Request to Pay message exchanges

31

o

o

o

o

o

o

o

o

o

o

o

Failure type Handling

Registration check
Certificate failures

Message must be returned to sender. Sender must be presented with a failure report
and remediation instructions depending on the cases as described in section 6.6.

Service-offline failures Sending party agent (app or repository) must retry sending the message. A retry cycle
pattern may be 5min, 15min, 1hour, 6 hours, 24hours, abandon. Sender must be made
aware that message delivery is pending.

Rejection failures Rejected messages should return to sender, as described in section 6.6.5.

Table 3 Failure types and handling

32

Repo locator Alias Usage data

Microservices

API Gateway API Management Portal

TPP Registry

Control and Monitoring
interface

Developer Portal

Certificate
Revocation Cache

OCSP/CRL

oAuth2

Admin
Auth

External
API

Callers

Control
interface

user

Figure 16 High level architecture for the Index

management

33

API Endpoint

TPP Registration Check GET /tppregistrationchk/<id>

Inputs Outputs

URI Path: id TPP ID to check 200 OK JSON Data TPP data provided, including
certificate fingerprint, App
oAuth redirect URL etc..

Headers Errors

caller-id The unique ID of the caller
Repository of this API

404 Not found No data
400 Bad request
401 Unauthorized
500 Internal Server Error

TPP invalid
Malformed data supplied
Caller Certificate Invalid
Server Error

type Type of TPP to be checked
(App / Repo)

API Endpoint

Alias Lookup GET /alias/<alias>

Inputs Outputs

URI Path: alias The alias to get the PID for 200 OK JSON Data Alias has been found and the
PID is returned.

Headers Errors

caller-id The unique ID of the caller
(App / Repo) generated at the
time of registering the caller

404 Not found No data
400 Bad request
401 Unauthorized

Alias has not been found
Malformed data supplied
Caller Certificate Invalid

API Endpoint

TPP API endpoint lookup GET /tppappendpoint/<repoId>

Inputs Outputs

URI path: repoId The unique ID of the repository
whose App end-point is
enquired

200 OK <endpoint uri> Repo ID has been found and
endpoint URIs is returned.

Headers Errors

app-id The unique ID of the caller App
of this API

404 Not found No data
400 Bad request
401 Unauthorized

TPP ID has not been found
Malformed data supplied
Caller Certificate Invalid

API Endpoint

TPP Repository endpoint lookup GET /tpprepoendpoint/<repoId>

Inputs Outputs

URI path: repoId The unique ID of the repository
whose Repo end-point is
enquired

200 OK <endpoint uri> Repo ID has been found and
endpoint URIs is returned.

Headers Errors

caller-repo-id The unique ID of the caller
Repository of this API

404 Not found No data
400 Bad request
401 Unauthorized

TPP ID has not been found
Malformed data supplied
Caller Certificate Invalid

API Endpoint

check the Registration of a Repository GET /tppreporegistrationchk/<repoId>

34

Inputs Outputs

URI path: repoId The unique ID of the repository
whose registration needs to
checked

200 OK Empty Response

Headers Errors

caller-repo-id The unique ID of the caller
Repository of this API

404 Not found No data
400 Bad request
401 Unauthorized

TPP ID has not been found
Malformed data supplied
Caller Certificate Invalid

API Endpoint

Manage aliases POST, PUT, DELETE /alias/<alias>

Inputs Outputs

URI path: alias Mobile number or email 200 OK <PID>, alias Alias has been created,
modified or deleted

PID The PID to associate with alias

Headers Errors

 500 Server error Alias modification error

API Endpoint

Consolidated QoS Data GET /qos

Inputs Outputs

 200 OK JSON Data Consolidated QoS data
provided, grouped by
Repositories, further sub
grouped by QoS Type – USER,
THREADS, MESSAGES,
TRANSACTIONS

Headers Errors

 500 Server error Error in getting data

404 Not Found No data found

API Endpoint

Manage TPP Registration records of a TPP
Get All TPPs, Create a new TPP

GET, PUT, DELETE /tpp/<tpp_id>
GET, POST /tpp

Security: Requires management console user authentication token

Inputs Outputs

URI path: tpp_id TPP id to retrieve, update or
delete

200 OK JSON Data TPP has been retrieved &
returned, modified or deleted

JSON data: see TPP data
schema

TPP data to Create 200 OK JSON Data

200 OK TPP data array

TPP Created

All TPPs retrieved and returned

Headers Errors

 500 Server error Internal Server Error

 400 Bad request Malformed data supplied

 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

35

API Endpoint

Manage Registration records of a TPP APP
Create a new APP

PUT, DELETE /app/<appId>
POST /app

Security: Requires management console user authentication token

Inputs Outputs

URI path: appId App id to update or delete 200 OK JSON Data TPP App has been modified or
deleted

JSON data: see TPP App data
schema

App data to Create 200 OK JSON Data TPP App Created

Headers Errors

 500 Server error Internal Server Error

 400 Bad request Malformed data supplied

 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

API Endpoint

Manage Registration records of a TPP Repository
Get All Repositories, Create a new APP

PUT, DELETE /repositories/<repoId>
GET, POST /repositories

Security: Requires management console user authentication token

Inputs Outputs

URI path: repoId Repo id to update or delete 200 OK JSON Data TPP Repo has been modified or
deleted

JSON data: see TPP Repo data
schema

Repo data to Create 200 OK JSON Data

200 OK TPP Repo data array

TPP Repo Created

Repos retrieved and returned

Headers Errors

 500 Server error Internal Server Error

 400 Bad request Malformed data supplied

 404 Not Found No Data Found
(delete/update)

 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

Table – TPP data

Name Type Description

TPP_ID 64bit int Unique identifier of a third-party provider

Organisation name String Registered company name

Organisation reg
number

String Registered company number

Organisation address Text Address

Organisation telephone
number

String Telephone number

Organisation technical
contact

String Email address

Organisation
administrative contact

String Email address

Certification date Date Date of certification

Registration status String To be defined – provisionally one of: test, active, suspended, deleted

Repository operator Boolean If true, this TPP is authorised to operate repository

36

Application operator Boolean If true, this TPP is authorised to operate applications

Certificate fingerprint Text

Table – Repository data

Name Type Description

TPP_ID 64bit int Unique identifier of a third-party provider

Repository ID String Registered repository name

Primary Repo API endpoint String Root URL for the API exposing repository-to-repository APIs

Secondary Repo API endpoint String Root URL for the API exposing repository-to-repository APIs

Tertiary Repo API endpoint String Root URL for the API exposing repository-to-repository APIs

Primary App API endpoint String Root URL for the API exposing application APIs

Secondary App API endpoint String Root URL for the API exposing application APIs

Tertiary App API endpoint String Root URL for the API exposing application APIs

Table – App data

Name Type Description

TPP_ID 64bit int Unique identifier of a third-party provider

App ID String Registered application name

App name String Registered application name

Primary oAuth redirect URL String Registered redirection URL for oAuth. See “End-user Authentication
service” section in chapter 0.

Secondary oAuth redirect URL String Registered redirection URL for oAuth. See “End-user Authentication
service” section in chapter 0.

Tertiary oAuth redirect URL String Registered redirection URL for oAuth. See “End-user Authentication
service” section in chapter 0.

Table – Alias data

Name Type Description

Alias String Alias – e.g. Email or telephone number

PID String End-user’s primary identifier

37

App Microservices

API Gateway

API Management Portal

Message boxes

Developer Portal

Message Transfer Microservices

Message
Transfer Agent

Message queue

Request to
Pay

Application

Request to
Pay

Application

Request to
Pay

Applications

Other
Message

repositories

Other
Message

repositories

Other
Message

repositories

To Other Message
Repositories

Messages for Other
Message Repositories

oAuth2

End-
user IDV

Figure 17 Message repository high level architecture diagram

38

Payer Payer app Pater repo oAuth Index TPP check

Open App

Validate scope and
other params

Enter registration data

Redirect to Payer
repo login page

Present login form
Enter login
information

Get redirect URL
(unless cached)Redirect to Payer

App with
auth_code

Validate
parameters

auth_code

Token

Payer repo API

Call APIs

/authorise

/token

Figure 18 Auth2 applied for authenticating user from any app

Parameter Status Value
response_type Mandatory Value MUST be set to “code”
client_id Mandatory Fingerprint of the TPP certificate provided during accreditation
scope Mandatory Value MUST be set to “request-to-pay-app”
state Recommended Opaque value set by the client
redirect_url Optional This parameter can be used to select one of pre-registered redirect URLs

listed in the index. If not supplied, the primary URL registered in the index
will be used.

Table 4 Mandatory parameters for authentication initiation request

redirect_url

redirect_url

API Endpoint

List my requests GET
/user/requests[?filter=”sent”|”received”[&from=<fromval>[&to=<toval>]]]

Security: Requires end-user authentication token (access-token)

Inputs Outputs

filter If parameter value “sent” is specified, list only
Requests sent by the current user.
If parameter value “received” is specified, list
only Requests received by the current user.
If parameter is not specified, list all Requests
for the current user
Any other value, return an error.

200 OK JSON DATA JSON Array or Requests,
categorized as sent and received
RTPs and details of each requests.

from UTC timestamp

to UTC timestamp

app-id The unique application Id

39

profile A string identifies it as a RTP request – always
‘RTP’

Headers Errors

 401 Not Authorised If the certificate presented does
not entitle the caller to execute this
API

 400 Bad request Invalid parameter supplied

 500 Server Error Internal Server Error

 404 No data No Data Found

API Endpoint

Get all messages for a request GET /user/<RQID>/messages

Security: Requires end-user authentication token

Inputs Outputs

Uri path: RQID Unique ID of the Request to
Pay

200 OK JSON DATA JSON data: An array of
Message objects containing
messages associated with RID

Headers Errors

filter If parameter value “sent” is
specified, list only messages
sent by the current user.
If parameter value “received”
is specified, list only messages
received by the current user.
If parameter is not specified,
list all Requests for the current
user.

500 Server error Internal Server Error

app-id The unique application id 400 Bad request Malformed data supplied

from

UTC Timestamp

401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

to UTC Timestamp 404 No Data Found No Data Found

API Endpoint

Send a message POST /user/<RQID>/messages?PID=[PID]

Security: Requires end-user authentication token

Inputs Outputs

JSON data: A message Object
to send

Request to Pay data 200 OK JSON Data Message accepted for delivery.
JSON data: RQID, Message ID

Uri query: PID Primary user identifier sending
the message

Uri path: RQID Unique ID of the Request to
Pay

Headers Errors

app-id The unique application id 500 Server error Send message error

 400 Bad request Malformed data supplied

 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

API Endpoint

Send a message (bulk) POST /user/messages?PID=[PID]

Security: Requires end-user authentication token

Inputs Outputs

JSON data: An array of
message Object to send

Request to Pay data 200 OK JSON Data Message accepted for delivery.
JSON data: An array of {RQID,
Message ID}

Headers Errors

40

app-id The unique application id 500 Server error Send bulk messages error

Uri query: PID Primary identifier of the user 400 Bad request Malformed data supplied

 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

API Endpoint

Register a new User in Repository POST /user

Inputs Outputs

JSON data: User Object to
register

New User Data 201 OK

Headers Errors

app-id The unique application id 500 Server error User registration error

 400 Bad request Malformed data supplied

API Endpoint

Get existing User Details
Update existing User Details

GET /user
PUT /user

Security: Requires end-user authentication token

Inputs Outputs

JSON data: User Object

User Data to be updated

200 OK
200 OK JSON Data

User Data
OK

Headers Errors

app-id The unique application id 500 Server error Internal Server Error

 400 Bad request Malformed data supplied

 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

 404 No Data Found No Data Found

API Endpoint

Login existing User GET /user/login

Inputs Outputs

JSON data: User Login Object User Login Data 200 OK X-RTP-Access-Token
(Res: headers)

Access Token to be send in
further user API calls

Headers Errors

app-id The unique application id 500 Server error Internal Server Error

 400 Bad request Malformed data supplied

 404 No Data Found No Data Found

API Endpoint

Logout an existing logged in User PUT /user/logout?user=[user-id]

Inputs Outputs

Uri: query User id of the user 200 OK JSON Data Message to user

Headers Errors

app-id The unique application id 500 Server error Internal Server Error

 400 Bad request Malformed data supplied

 404 No Data Found No Data Found

41

API Endpoint

Get existing User alias GET
/user/lookup?mobileNumber=[mobileNumber]|email=[email]

Security: Requires end-user authentication token

Inputs Outputs

Uri: query - mobileNumber
Uri: query - email

Mobile Number of the user
Email of the User

200 OK JSON Data PID of the searched user

Headers Errors

app-id The unique application id 500 Server error Internal Server Error

 400 Bad request Malformed data supplied

 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

 404 No Data Found No Data Found

API Endpoint

Get all blocked users
Unblock a user

GET /user/blocked
DELETE /user/{PID}/blocked

Security: Requires end-user authentication token

Inputs Outputs

Uri: path - PID

PID of the user to unblock

200 OK JSON Data
200 OK JSON Data

Array of blocked PIDs
PID of the unblocked user

Headers Errors

app-id The unique application id 500 Server error Internal Server Error

 400 Bad request Malformed data supplied

 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

 404 No Data Found No Data Found

API Endpoint

Send a message POST /repo/{RQID}/messages

Inputs Outputs

JSON data: A message Object
to send

Message data 200 OK JSON Data Message accepted for delivery.
JSON data: RQID, Message ID

Uri: path - RQID Request Id

Headers Errors

repo-id Sender repository id 400 Bad request Malformed data supplied

 401 Not Authorised If the certificate presented
does not entitle the caller to
execute this API

API Endpoint

Process a request POST /repo/{RQID}/process

Inputs Outputs

JSON data: A message Object
to send

Message data 200 OK JSON Data Message processed.

Uri: path - RQID Request Id

Headers Errors

repo-id Sender repository id 400 Bad request Malformed data supplied

profile Always “RTP” 500 Server error RTP Process error

42

API Endpoint

Total active users GET /qos/users

Inputs Outputs

 200 OK JSON Data Users data count provided,
grouped by registered
applications in the repository

Headers Errors

 500 Server error Error in getting data

404 Not Found No data found

API Endpoint

Total Threads (RTPs) GET /qos/threads

Inputs Outputs

 200 OK JSON Data Threads’ (RTPs) data count
provided, for the Repository
grouped by thread state -
‘Active’, ‘Overdue’,
‘Completed’

Headers Errors

 500 Server error Error in getting data

404 Not Found No data found

API Endpoint

Total Messages Processed GET /qos/messages

Inputs Outputs

 200 OK JSON Data Messages Processed data
count provided, including
status of messages for the
Repository grouped by type of
messages – ‘sent’, ‘received’,
‘failed’

Headers Errors

 500 Server error Error in getting data

404 Not Found No data found

API Endpoint

Total Transactions Processed GET /qos/transactions

Inputs Outputs

 200 OK JSON Data Transactions Processed
amount provided, including
type of transaction for the
Repository grouped by type –
‘processed’, ‘requested’

Headers Errors

 500 Server error Error in getting data

404 Not Found No data found

43

Table – IDV data

Name Type Description

user_id String User ID in this repository. This is the first part of the PID.

auth_first_factor String First authentication factor. May be password hash.

auth_second_factor String Registered application name. May be memorable word.

Title String Person’s title such as Mr, Ms, Mrs, Miss, Dr etc.

First name String First name

Middle name String Middle name

Surname String Surname

Address Text Address

Post code String Post code

Account number Interger Account number

Sort code String Sort code

Table – Message data

Name Type Description

Message ID 64bit int Unique identifier of the message within a Request to Pay thread

RQID String Unique ID of the Request to Pay. Can be viewed as a unique ID of the
thread.

PID String Primary ID the message is addressed to.

Sender PID String Primary ID of the message sender.

o

o

o

o

o

44

45

Repository
Apigee 127 uSvc
Docker container

Cloud hosting

Index
Apigee 127 uSvc
Docker container

Cloud hosting

Data
MySQL or Apache usergrid

Docker container
Cloud hosting

Repository
Apigee 127 uSvc
Docker container

Cloud hosting

Repository
Apigee 127 uSvc
Docker container

Cloud hosting

iOS Application
Native iOS application
Or Responsive design

Mobile Web app

Other interfaces
Control interface web app
Corporate biller web app

Figure 19 Preliminary components and implementation technologies for RtP demonstrator

46

 ‘https://api.<companyname>.com/api/amenities’

 ‘https://api.<companyname>.com/api/amenities/v1’

 ‘https://api.<companyname>.com/api/amenities/v1/flights/UA881/cabin

47

/api/amenities/v1/flights

http://api.foo.com/api/amenities/v1/flights

 .
http://api.foo.com/api/ameneties/v1/flights/UA123

http://api.foo.com/api/amenities/v1/flights/UA123/book

http://api.foo.com/api/amenities/v1/getflights

 http://api.foo.com/api/about-us

URL Description

/servicename/v1 This is the entry point for the API

/servicename/v1/{ResColName} Resource name of a top-level

collection

/servicename/v1/{ResColName}/{ResId} A resource instance within the

collection of resource

http://api.foo.com/api/about-us

48

/servicename/v1/{ResColName}/{ResId}/{SubResColName} A sub-resource collection under the

resource ResId

/servicename/v1/{ResColName}/{ResId}/{SubResColName}/{SubRedId} SubRedId inside the collection of

SubResource

Table 5 URL and description

type "/" subtype *(";" parameter)

49

Accept: application/json,application/xml;q=0.9,text/html;q=0.8,*/*;q=0.7

Content-type: application/json; charset=ISO-8859-4

Http Error Response

400
Bad Request Indicates that the request had some mal-formed

syntax error due to which it could not be

understood by the server. Probable reason could

be missing mandatory parameters or syntax error

401
Unauthorized Indicates that the request could not be

authorized possibly due to missing or incorrect

authentication token information

403
Forbidden Indicates that the request was understood by the

server but it could not be processed due to some

policy violation or the client does not have

access to the requested resource

50

404
Not Found Indicates that the server did not find anything

matching the Request-URI

405
Method Not Allowed Indicates that the method specified in the

Request-Line is not allowed for the resource

identified by the Request-URI

409
Conflict Indicates that the request could not be processed

due to a conflict with the current state of the

resource

414
Request URI Too

Long

Indicates that the Request URI length is longer

than the allowed limit for the sever

415
Unsupported Media

Type

Indicates that the request format is not

supported by the server

429
Too Many Request Indicates that the client has submitted the

request too often and needs to slow down

500
Internal Server

Error

Indicates that the request could not be processed

due to an unexpected error in the server.

501
Not Implemented Indicates that the server does not support the

functionality required to fulfil the request

502
Bad Gateway Indicates that the server while acting as a

gateway or proxy received an invalid response

from the backend server

503
Service Unavailable Indicates that the server is currently unable to

process the request due to temporary overloading

or maintenance of the server. Trying the request

at a later point of time might result in success

504
Gateway Timeout Indicates that the server while active as a

gateway or proxy did not receive a timely

response from the backend server

{

“status” : {status [optional]},

“code” : {code [optional]} ,

“message”: “Error message”,

"errors": [optional]

[

{ "code": {error code},

"message": "Error message"

}

]

{

“status” : 400,

51

“code” : 40010,

“message”: “SMS message body is not specified”,

"errors": [

{ "code": 1, "message": "SMS message body is required"

} ,

{ "code": 2, "message": "SMS recipient is required" }

]

}

52

A.

53

B.

54

Category Number Functional requirement

General G1 Request to Pay implementations must be invariant to payment methods.

TPP T2 Allow Third-Party operators to operate end-user applications

TPP T3 Allow Third-Party operators to operate message repositories

TPP T4 Provide a central Third-Party registry that provides standard PKI infrastructure, including
issuing certificates and real-time certificate revocation checks.

End-user E1 Allow end-users to register with Third-Party providers

Repository R1 Support transporting messages between Payer and Payee who may have different service
providers (third party operators).

Repository R2 Support any number of messages associated with a specific request to pay, and easy
retrieval of all message associate with a specific Request to Pay.

General G2 Support message attachments so that a bill may be attached to a request, or a receipt
may be attached to responses.

General G3 Support validation of message format and type in the context of original request, to
provide assurance message can be understood by the other party

Index I1 Support validation of Payee details by Payer – e.g. via Confirmation of Payee

General G4 DUPLICATE of R1 - Support transporting messages between Payer and Payee who may
have different service providers.

Index I2 Support mutual authentication between any two third-party providers for each
transaction between them.

Index I3 Support mutual authentication between central infrastructure and third party providers
for each transaction.

Index I4 Support real-time checks of Third-Party provider identity

General G5 Support message authentication codes that will prevent tampering with a message in the
delivery path.

General G6 Each participant in message delivery (repository, application) must provide confirmation
of message receipt and notification of failure to deliver a message.

General G7 Each participant in message delivery (repository, application) must provide a facility to
retrieve all messages associate with a specific Request to Pay

General G8 Support uniquely identifying end-users based on a PID

General G9 Support email and mobile phone number as PID aliases

General G10 Support end users who do not have a bank account as Payers

Application A1 Third-Party Application providers must support at least one electronic payment method

General G11 The service implementation must not exclude cash payments, however Third Party
provider may choose not to provide this facility

General G12 The service implementation must not exclude end-users who do not have smart devices

General G13 The service implementation must not exclude end-users who do not have internet
connectivity

Application A2 Request to Pay may only be generated with a full PID of the Payee

Application A3 Request to Pay may only be generated if a Payee has a bank account on file

General G14 Associating a Payee with a bank account must involve Confirmation of Payee check

Application A4 Payer must clearly see the result of Confirmation of Payee query on the Payer

Index I5 When looking up an alias, Index must not disclose PID but must rather return only the
Repository endpoint for the given alias.

Table 6 Functional requirements

55

